Effects of Sea Breeze on City Ventilation - Important for Air Ventilation Assessments?

Tobias Gronemeier¹, Siegfried Raasch¹, Edward Ng²

¹Leibniz University Hannover, Germany ²Chinese University of Hong Kong, China

Why did we do it

- As urban population increases, preserving an acceptable city climate becomes a major challenge of future city planning
- Air Ventilation Assessments (AVAs) help city planners to predict city ventilation of planned construction sites
- To sufficiently predict ventilation, an AVA must cover the real atmospheric situation
- Current AVA focus only on neutral conditions
 → Is this sufficient for summer weak-wind conditions in a coastal city area?

How did we do it

- LES simulation of Kowloon peninsula (Hong Kong), using the model PALM
- Summer weak-wind condition:
 - easterly background wind: 1.5 ms⁻¹, fixed surface heat flux: 200 Wm⁻²
- Two cases:
 - homogeneous heating throughout domain
 - sea-breeze case where only land is heated
- Divide city into 3 regions (according to [2]):
 - C1: SW ventilated; C2: weakly ventilated; C3: SE ventilated
- Passive scalar released at surface within city area

How is the ventilation?

- Sea breeze penetrates city area along the entire coastline, forming a convergence zone above the city
- Higher V_r at west coast due to lower building density and flat terrain
- Comparison shows higher V_r in sea-breeze case especially in western part of Kowloon

Is the pollution dispersion influenced by sea-breeze?

- Scalar concentration differs significantly between cases
 - Strong west-east gradient in sea-breeze case, north-south homog. in homog. heating case
- Different wind fields yield large differences in s^* between cases
 - Depending on case, high s^* values are observed in different city areas

Looking at different city regions

- C1, C2, C3 correspond to different city regions according to [2]
 - Mean wind direction (dir, Tab.1) agrees with classification made by [2] for sea-breeze case but not for homog. heating case
- Although C1 has highest ventilation, pollution is also highest
 → Between Kowloon and Hong Kong Island, complex wind circulation transports pollution over sea where it re-enters the city area
- Vanishingly low correlation between V_r and mean building height H_{avg} confirm that H_{avg} plays a minor role for city ventilation (Fig.4, see also [1])

Let’s summarize

- Ventilation changes significantly between sea-breeze case and homogeneously heated case in strength and direction
- More complex wind circulation lead to differences in pollution concentration (W-E gradient instead of N-S)
- Main wind direction from measurements can only be reproduced if sea-breeze is considered
 → It is essential to cover sea-breeze effects if a sufficient analysis of the city ventilation is focused during summer weak-wind conditions.

What’s next

- Further detailed analysis of wind system between Kowloon and Hong Kong Island should reveal more details of sea-breeze effects on ventilation
- Compare results with real-world measurements in Hong Kong
- Using PALM’s new nesting methods, a larger area can be simulated to study effects of large-scale wind systems
 (see also poster 1D-51)

References & Acknowledgments

[3] T. Gronemeier was supported by MOSAIK, funded by the German Federal Ministry of Education and Research (BMBF) under grant 01LP1601A (http://www.fona.de)

Gronemeier, Raasch, Ng (2018) - 10th International Conference on Urban Climate, 6-10 August 2018, New York, NY

gronemeier@muk.uni-hannover.de www.palm-model.org