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A B S T R A C T

This study examines the spatial-temporal changes of land cover and the surface urban heat island
(SUHI) effect in the Pearl River Delta (PRD) region from 2000 to 2015. The Local Climate Zone
(LCZ) concept is used, given its standard but comprehensive classification scheme designed for
urban climate studies. Firstly, historical LCZ maps of the PRD region were generated using the
World Urban Database and Access Portal Tools (WUDAPT) protocol. Secondly, summer mean
land surface temperature (LST) during daytime and night-time was retrieved from remote sensing
data to analyze the SUHI. Thirdly, the correspondence between the spatial-temporal patterns of
LCZ and LST were explored. The results show that urbanization in this region comprises trans-
formation from natural land covers to built types and conversion in the built up, in particular
densification and vertical enhancement of existing urban types. The LST in the region increased
in general but the spatial pattern of LST increase is affected by the land cover change. LCZ 6
(open low-rise) and LCZ 8 (large low-rise) show the greatest increase in LST. LCZ 4 (open high-
rise) and LCZ 8 are the two dominant LCZs in high SUHI zone and LCZ 8 keeps growing as the
most principal LCZ type.

1. Introduction

Land cover refers to the physical attributes of the surface of the Earth, such as cropland, forest, grasslands, wetlands and so on
(Turner et al., 1994; Turner et al., 1993). Due to fast urbanization worldwide, the urban underlying surface changes sub-
stantially—most importantly pervious vegetated surfaces transform into impervious surfaces (Mallick et al., 2008). Such land cover
changes affect not only the composition of different surface materials but also has effects on flows of substances and energy. The
specific influences include changing vegetation types (Yang et al., 2009), land surface emissivity (Gan et al., 2006), surface roughness
(Shi et al., 2006), land surface temperature (LST) (Liu et al., 2006), land surface evaporation (Sun and Zhou, 2010), soil quality (Deng
et al., 2010), organic matter in water bodies and others (Qin et al., 2010). An intensifying Urban Heat Island (UHI) effect which is
closely related to surface changes is seen as an inevitable problem (Mallick et al., 2008). On the one hand, the United Nations project
that by 2050, 68% of the world's population will live in urban areas (United Nations, 2018). Moreover, 90% of the growth in urban
population will take place in Asia and Africa (United Nations, 2018). Especially, China is projected to add 255 million urban dwellers
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between 2018 and 2050 (United Nations, 2018). On the other hand, the global mean surface temperature during 2006–2015 was
observed 0.87 °C higher than that of 1850–1900 (IPCC, 2018). Given the significant urbanization around the world, the surface
temperature is expected to keep rising and an increasing proportion of the worldwide population will be exposed to the rising
temperature in urban areas (Allen et al., 2014).

The phenomenon that urban temperature is higher than that of its surrounding rural areas, which is called Urban Heat Island
(UHI), has been observed and documented worldwide (Clinton and Gong, 2013; Heinl et al., 2015; McCarthy et al., 2010; Oke, 1973;
Peng et al., 2011; Santamouris et al., 2015; Zhao et al., 2014). Generally, the UHI comprises both air temperature UHI and surface
UHI (SUHI), which are defined by (canopy or boundary layer) air temperature and LST differences between urban and rural areas
respectively. Air temperature is measured in situ using station networks. However, the coverage of ground-level observational
meteorological stations is limited in China, and air temperature is difficult to acquire in high temporal and spatial resolution. Land
surface temperature (LST) measured by thermal infrared radiometers carried by aircraft or satellites can provide continuous cov-
erage, high integrity and real-time data acquisition over large areas (Voogt and Oke, 2003). Thus, the land surface temperature is
selected as the focus of this study.

As a consequence of the opening and reform policy which put forward the formation of special economic zones and open cities in
coastal areas, the Pearl River Delta (PRD) region has experienced rapid urbanization since 1978 substantially changing the land cover
and altering land surface temperature. Many scholars have investigated the changes of land covers, land surface temperature, and
surface UHI effect as well as their relationship at a single year or multi-temporal periods in the fast-urbanized PRD region (Chen et al.,
2006; Dou and Chen, 2017; Mou and Zhao, 2012; Weng, 2001; Zhang et al., 2007). Scholars particularly focus on the transformation
from natural land covers to urban construction types and its impact on land surface temperature in this region (Qian and Ding, 2005;
Weng, 2001). However, most studies adopt a rough urban classification scheme with commonly one urban category (Tian et al.,
2017). Such a single urban classification system ignores the complexity and spatial heterogeneity of urban structure and does not
account for the transformation of the urban structure being the increase in height or density. Detailed urban categories will help
develop an in-depth understanding of not only the conversion between natural and urban land cover but also a transformation from
one urban type to another. Moreover, the corresponding LST variations will clarify the relationship between land cover changes and
the magnitude of the SUHI.

The World Urban Database and Access Portal Tools (WUDAPT) was developed as a new global initiative to produce standardized
data on urban form and function for different applications and in different levels of detail (Bechtel et al., 2015; Ching et al., 2018).
This most basic description of urban landscapes in WUDAPT (= level zero) (Bechtel et al., 2019a) discretizes urban landscapes into
Local Climate Zones (LCZs), a scheme which comprises ten built types and seven land cover types (Stewart and Oke, 2012). With the
ten built types, the inner urban structure transformation can be investigated in sufficient details for many climatic applications.
Moreover, LCZ links land cover types and urban morphology with corresponding thermal properties, which is particularly suitable for
UHI studies (Stewart and Oke, 2012). Thus, we applied the LCZ-based WUDAPT data to detect the changes of land covers and LST in
one of the fastest urbanized regions, the PRD region, in China. Researchers have already applied LCZ to SUHI studies at Delhi in India
(Budhiraja et al., 2017), Brno and Prague in Czech (Geletič et al., 2016), Szeged in Hungary (Skarbit et al., 2015), Sydney in Australia
(Koc et al., 2018), Dubai in the Middle East (Nassar et al., 2016), Taipei in Tai Wan, China (Shih, 2017), Phoenix and Las Vegas in
United States (Wang et al., 2018), and Wuhan (Wang et al., 2017), Fuzhou (Lin and Xu, 2016), Yangtze River Delta region in China
(Cai et al., 2018). Bechtel et al., 2019b (in press) conducted a SUHI comparison of 50 cities using LCZ. However, on the one hand, the
number of the SUHI-LCZ studies is still low at the current stage. On the other hand, due to better data availability from Landsat
satellite, the Landsat data are used for SUHI-LCZ studies. Many studies focus only on the daytime situation of SUHI since the Landsat
satellite images are only available for daytime. Besides, most of the studies mentioned above merely examined the LST difference
between each LCZ class at one day or one year including different seasons but did not investigate the effect of the land cover change.
However, the fast urbanization process in the PRD region also allows change analysis within the lifetime of current satellite sensors.

This study employs WUDAPT based LCZ mapping to detect the historical land cover change and relate it to land surface tem-
perature variation in the PRD region. The objectives of this study are to, firstly, apply the WUDAPT method to derive multi-temporal
LCZ data and analyze the spatiotemporal changes of land cover and urbanization in the PRD region; secondly, acquire LST dis-
tribution pattern and SUHI of this region and identify the general trend of land cover and LST changes; in addition, the LST dif-
ferences in each LCZ class are explored, and the distribution of LCZ types in each SUHI zone is analyzed; lastly, the LST change of
each LCZ class during the study period are compared.

2. Materials and methodology

2.1. Study area

The Pearl River Delta (PRD) region is located in the Guangdong province, in the southeast of China, close to the South China Sea
(Fig. 1). The PRD region covers an area of 55,000 km2. It used to be a major agricultural production area before the implementation
of the opening and reform policy in 1978. In the 1980's, the name “Pearl River Delta (PRD) region” was put forward as an economic
and industrial region. After the putting forward of the opening and reform policy, with increasing prosperity of different industries, a
large population of workers and new immigrants moved into this region. Correspondingly, a large amount of agriculture land was
converted into construction land to support economic growth and building construction for urban dwellers. From 2000 to 2010,
urban area in the PRD region grew by 2615 km2 (Statistics Bureau of Guangdong Province, 2001, 2011). In 2008, the urbanization
rate of the PRD region was up to 80.5% and the built-up areas took up around 16% of the whole area of the PRD region (Government
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of Guangdong Province, 2010). This leads to rapid land cover change with urban development, a problem that is not unique to the
PRD region, since many cities or regions within fast urban development in China. And other fast-developing countries are facing
similar problems (Lambin, 1997; Murdiyarso, 2000).

2.2. Data

Images from two satellites were used in this study: Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS).
Landsat data were employed in this study to map LCZ types in the PRD region, due to its long temporal coverage, free availability,
and spatial resolution. Landsat 5 images were selected for 1999 and 2009 and Landsat 8 images were selected for 2014, according to
their cloud cover and availability (see Table 1). According to the statistics about the urban population and Gross Domestic Product
(GDP) in the PRD region in recent decades, the increase rate of both urban population and GDP in this region slowed down during
1999 to 2014 with 2009 serving as the breakpoint. Therefore, land cover change analysis is conducted based on two sub-period-
s—sub-period 1 (1999–2014) and sub-period 2 (2009–2014).

LST products retrieved from MODIS onboard NASA's Terra satellite were chosen due to several advantages over other remote
sensing thermal infrared data (Wan, 2006). Firstly, it has large spatial coverage which can cover the whole PRD region. Secondly,
MODIS has a temporal resolution of 0.5 days with passing over the study period twice a day, which captures the surface temperature

Fig. 1. Location and main cities of the Pearl River Delta (PRD) region.

Table 1
Landsat images used in this study.

Year Landsat entity ID Date of Landsat images

1999 LT51210441999320BKT00 1999-11-16
LT51210451999320BKT00 1999-11-16
LT51220441999359BKT00 1999-12-25
LT51220451999359BKT00 1999-12-25

2009 LT51210442009283BJC00 2009-10-10
LT51210452009283BJC00 2009-10-10
LT51220442009306BKT00 2009-11-02
LT51220452009306BKT00 2009-11-02

2014 LC81210442014281LGN00 2014-10-08
LC81210452014281LGN00 2014-10-08
LC81220442014320LGN00 2014-11-16
LC81220452014320LGN00 2014-11-16
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at both daytime and night-time for day-night comparisons. Furthermore, due to its daily temporal resolution, it can provide sufficient
data during the study period. Finally, the data is available since 2000, which covers most of the study period. The MODIS LST product
is produced using the generalized split-window algorithm (Wan, 2008; Wan and Dozier, 1996). Validation of the LST algorithm
showed errors lower than 1 K over homogeneous surfaces such as water, crop, and grassland surfaces (Wan, 2008). Hence, the MODIS
Terra global LST and Emissivity 1-day (MOD11A1) data which comprises daytime and night-time LST at 1 km resolution were used in
this study (Wan, 2006). The data from June to September for each year were used in this study as the surface urban heat island effect
is most pronounced in summer (Zhou et al., 2004).

Since MODIS was only launched in 2000, the MODIS LST data in 2000 was selected as corresponding LST pattern for 1999. In
addition, heavy rainfall in the August 2014 caused by a strong typhoon and southwest monsoon in Guangdong province resulted in
poor data quality and potential underestimation the summer LST in 2014 (Guangdong Meteorological Service, 2015). Therefore,
MODIS data for 2015 instead of 2014 was used in this study. The selected years, 2000, 2009 and 2015, all experienced a hot and
generally sunny summer, with summer average air temperatures of 28.5 °C，29.1 °C and 29.0 °C respectively (Guangzhou
Meteorological Service, 2017). To sum up, MOD11A1 data of 2000, 2009, and 2015 were used for LST-LCZ analysis and SUHI
analysis in the PRD region. In addition, MOD11A1 data from June to September from every year between 2000 and 2017 were
applied for LST trend analysis (Section 3.3.1).

2.3. Method

2.3.1. Local Climate Zone (LCZ) classification
WUDAPT suggests a standardized workflow to generate LCZ maps (Table 2) representing different built and natural land cover

types (Bechtel et al., 2015). It contains three major steps: Firstly, the pre-processing of Landsat images: Landsat images were mo-
saicked into one image to cover the study area. Next, this image was resampled from 30m to 100m resolution and clipped to fit the
range of the PRD region.

Secondly, selection of training samples: polygons, representing training samples for all LCZ types present were digitized from
Google Earth based on local knowledge. In this paper, each LCZ type contains around 100 training samples, selected from Guangzhou,
Shenzhen, Zhaoqing, Jiangmen, Zhongshan, Foshan, Dongguan, Zhuhai, Huizhou, Hong Kong, and Macau in the PRD region.

Thirdly, LCZ classification by the random forest classifier: the pre-processed Landsat images and selected training samples were
used to train a random forest classifier (Breiman, 2001) using the LCZ classification tool in SAGA (Conrad et al., 2015). Taking
advantages of spectral features contained in each training sample, the random forest classifier generated the classification rule and
applied it to identify each pixel. The random classifier was selected as an ideal compromise between the achieved accuracy and

Table 2
LCZ scheme.
Adopted from Stewart and Oke (2012).

LCZ 1: Compact high-rise

• Tightly packed buildings with > 10 stories

• Little or no green space

• Built by concrete, steel, stone and glass

LCZ 2: Compact mid-rise

• Tightly packed buildings with three to nine
stories

• Little or no green space

• Built by stone, brick, tile and concrete

LCZ 3: Compact low-rise

• Tightly packed buildings with one to three stories

• Little or no green space

• Built by concrete, steel, stone and glass

LCZ 4: Open high-rise

• Openly arranged buildings with > 10 stories

• Abundance green space

• Built by concrete, steel, stone and glass

LCZ 5: Open mid-rise

• Openly arranged buildings with three to nine
stories

• Abundance of green space

• Built by concrete, steel and glass

LCZ 6: Open low-rise

• Openly arranged buildings with one to three stories

• Abundance of green space

• Built by wood, brick, tile and concrete

LCZ 7: Lightweight low-rise

• Lightweight building materials with one to two
stories

• Few or no trees

• Land cover is hard-packed

LCZ 8: Large low-rise

• Large, openly arranged buildings with one to
three stories

• Few green spaces

• Land cover is mostly paved

LCZ 9: Sparsely built

• Sparse arrangement of small or medium-sized
buildings in natural setting

• Abundance of previous cover

LCZ 10: Heavy industry

• Low-rise and mid-rise industrial structures
(towers, tanks, stacks)

• Few or no trees

LCZ A: Dense trees

• Heavily wooded landscape of deciduous
and/or evergreen trees

LCZ B: Scattered trees

• Lightly wooded landscape of deciduous and/or
evergreen trees

LCZ C: Bush, scrub

• Open arrangement of bushes, shrubs and short,
woody trees

LCZ D: Low plants

• Grass or herbaceous plants/crops

LCZ E: Bare rock or paved

• Rock or paved cover

LCZ F: Bare soil or sand

• Soil or sand cover

LCZ G: Water

• Large, open water bodies
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computational performance among the previously tested classifiers (Bechtel and Daneke, 2012). Moreover, the classifier is non-
parametric, which is essential since each LCZ can have quite different instances or appearances within one city. Also, the random
forest provides an unbiased out-of-bag error estimate without requiring additional testing data (Bechtel et al., 2015). This error is the
prediction error based on the trees that did not use a specific sample for training and has been widely applied in LST classification.
Experimentation with the number of trees in the random forest classifier of 4, 8, 16, 32, 64, 128, and 256 was conducted and the
results revealed a flattening out-of-bag error curve at 128 trees, so it was used as the final configuration for the LCZ classifications.
Each tree in the classifier is constructed using a sample in which around one-third of the observations are left out. Once all trees are
constructed, the resulting class for a given set of inputs is based on majority voting.

Finally, manual corrections were conducted for the historical LCZ maps, which is based on the assumptions that built types do not
turn back to natural land cover types. Given the LCZ map of the beginning year 1999 as a reference, the areas identified as built types
remain built types in 2009 and 2014.

2.3.2. Change detection
To monitor land development in the PRD region, change detection analysis based on land cover transformation matrices was

conducted. This analysis reveals the conversion among different LCZ types during specific periods. The matrix not only contains the
exact areas of different LCZs at certain time slot but also indicates the transferred areas of each LCZ type at the beginning and the end
of the study period. This transformation information is shown by the matrix (Li and Yeh, 2002) (Eq. (1)).

=S
S S S
S S S

S S S
ij

n

n

n n nn

11 12 1

21 22 2

1 2 (1)

In this matrix, n represents the total number of land cover types; i and j represent the land cover type before and after the land
cover change, Sij represents the area (m2) that changed from type i to type j. Values in every row show the transferred areas from land
cover type i to different land cover types; values in every column show areas that transferred from different land cover types to land
cover type j. The land cover transformation matrix indicates both quantity and direction of land cover change in the study area during
a certain period (Deng et al., 2009). It has been commonly used in land cover changing analysis (Li and Yeh, 2002; Liu et al., 2003;
Verburg and Overmars, 2009).

2.3.3. Identification of SUHI zones
In this study, the SUHI was analyzed for summer based on averaging the LST data from June to September. This provides a

comprehensive representation of summer LST patterns and eliminates short term fluctuations in weather and surface conditions.
Thus, the seasonal LST was computed by averaging all available MODIS product in summer in 2000, 2009 and 2015, respectively.

SUHI is often quantified based on a linear urban-to-rural gradient. However, the intra-urban temperature differences in urban
areas such as urban green space and urban water landscape can be ignored under this definition (Li et al., 2013; Sun and Chen, 2012).
Some studies have used the mean value and the standard deviations of LST in the whole study site to classify different SUHI zones,
which can reflect the internal temperature variations in the urban areas (Chen and Yu, 2017; Hu and Brunsell, 2013). Therefore, the
SUHI zones classification based on the variation of surface temperature in the entire study area was adopted in this study. Firstly, the
LST mean and standard deviation were calculated over the whole of the PRD region. Areas with LST more than one standard
deviation above the LST mean were empirically defined as high SUHI zones, and areas with LST less than one standard deviation
below the LST mean were defined as low SUHI zones, the medium SUHI zone was defined as the LST value between high and low
SUHI zones.

3. Results and discussions

3.1. Land cover change analysis in the PRD region

3.1.1. Overall analysis
The LCZ maps of the PRD region for 1999, 2009 and 2014 are shown in Fig. 2 Accuracy assessment is conducted based on three

sets of independent validation samples, which were depicted using Google Earth. The overall accuracies for the LCZ maps of 1999,
2009 and 2014 are 73%, 71%, 76% (Appendix A–C) and the Kappa coefficients for the three maps are 0.70, 0.68 and 0.73 (Appendix
A–C). Qualitatively, it is found that the built-up areas in the PRD region kept on enlarging from 1999 to 2014.

Table 3 illustrates the quantitative change of each LCZ type in the PRD region from 1999 to 2014. The results show that the
percentage of compact LCZs (LCZ 1–3) keeps rising; while the percentage of open LCZs (LCZ 4–6) decreases slightly between 1999
and 2014. The area of LCZ 7 (lightweight low-rise), most of which are rural villages, reduced over the entire period. The extent of the
most natural land cover types, namely LCZ A-G, reduced during the study period.

3.1.2. Land cover transferring analysis
As shown in Table 4, the areas of LCZ built types (LCZ 1–10) increased in sub-period 1. The area of compact LCZ types (LCZ 1–3)

increased mainly due to the transformation from other built types and transformation from natural LCZ types, especially LCZ B
(scattered trees) and LCZ D (low plants). In this period, the area of LCZ 1 (compact high-rise) doubled by mainly converting from LCZ
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2–5 (compact mid-rise, compact low-rise, open high-rise, open mid-rise). Such conversion illustrates both densification and vertical
enhancement in the PRD region. LCZ 4 (open high-rise) enlarged its area by 30% from 1999 to 2009. Apart from natural land cover
types, LCZ 6 (open low-rise) contributed to the increase of LCZ 4 (open high-rise), which indicates the vertical enhancement during
this period.

For natural LCZ types, transformations mainly occurred between different land covers and from land cover types to built types.
LCZ A (dense trees), LCZ B (scattered trees), LCZ C (bush, scrub), and LCZ D (low plants) converted to each other. Noticeably, the area
of LCZ A (dense trees) decreased by 2386km2 with nearly no incoming sources from other LCZ classes, instead, 1566km2 of LCZ A
(dense trees) converted to LCZ B (scattered trees), 628km2 converted to LCZ C (bush, scrub), and 110km2 converted to LCZ D (low
plants). LCZ B (scattered trees) and LCZ D (low plants) contributed 690km2 and 990km2 to the increase of built types (LCZ 1–10),
particularly LCZ 1–6 (compact LCZs and open LCZs). For LCZ E (bare rock/paved) and LCZ F (bare soil), both areas decreased during
sub-period 1, by 64% and 75%, respectively. While the area of LCZ G (water bodies) remained stable with mere changes of 2km2.

From 2009 to 2014, sub-period 2 (Table 5), the area of compact LCZs continued to increase but at a slower rate. Except for LCZ 2

Fig. 2. LCZ maps of the PRD region in the year of 1999, 2009 and 2014.

Table 3
Share of the LCZ types in the PRD region from 1999 to 2014 (%).

Year 1 2 3 4 5 6 7 8 9 10 A B C D E F G

1999 0.21 0.41 1.78 4.87 0.23 2.30 0.52 0.49 0.05 0.12 17.54 11.58 3.23 10.26 0.86 0.57 45.00
2009 0.48 0.32 2.51 6.42 0.16 2.08 0.28 1.92 0.12 0.15 13.38 8.79 8.55 9.41 0.31 0.14 45.00
2014 0.51 0.76 2.70 4.80 0.10 2.06 0.38 2.07 0.22 0.13 14.30 6.51 8.45 9.96 0.43 1.61 45.00
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(compact mid-rise), the annual increase rate of LCZ 1 (compact high-rise) and LCZ 3 (compact low-rise) slowed down (LCZ 1: 8.60%
in sub-period 1, 1.17% in sub-period 2; LCZ 3: 3.47% in sub-period 1, 1.47% in sub-period 2). The major sources for the increase of
LCZ 1 (compact high-rise) were still open LCZs and LCZ D (low plants). Different from sub-period 1, the area of LCZ 2 (compact mid-
rise) increased by 2.4 times by mainly converting from LCZ 3 (compact low-rise), which also indicates the densification in PRD during
this period.

During sub-period 2, except for LCZ B (scattered trees) and LCZ C (bush, scrub), and LCZ G (water bodies), other land cover types
increased. While, during sub-period 1, five of the seven land cover types showed a decreasing trend. Despite the continuous trans-
formation from LCZ A-D to LCZ built types, LCZ A (dense trees) and LCZ D (low plants) both gained areas from LCZ B (scattered trees)
and LCZ C (bush, scrub). Particularly, compared to no conversion from LCZ B-D during sub-period 1, 553km2 and 78km2 of LCZ A
(dense trees) converted from LCZ B (scattered trees) and LCZ C (bush, scrub). In addition, different from sub-period 1, areas of LCZ E
(bare rock/paved) and LCZ F (bare soil) increased by 1.4 times (74km2) and 11.6 times (846 km2), respectively, in sub-period 2. Area
of LCZ G (water bodies) also remained stable during this period.

From the above two Tables, the urbanization in the PRD region showed a continuous conversion from natural to urban LCZ types,
but also densification as well as and vertical enhancement of existing urban structures. All three processes can clearly be seen in the

Table 4
Land cover transformation matrix of the PRD region from 1999 to 2009 (km2).

LCZ class 2009

1 2 3 4 5 6 7 8 9 10 A B C D E F G Sum (1999)

1999 1 50 2 13 22 0 8 0 10 1 1 0 1 1 7 1 1 0 120
2 47 55 85 21 4 2 2 17 0 1 0 0 0 1 1 0 0 237
3 28 76 599 67 5 44 30 132 1 7 0 1 3 25 5 0 0 1024
4 40 26 354 1505 27 190 31 322 4 22 7 14 13 216 17 6 0 2795
5 15 8 14 36 43 4 2 4 0 0 1 0 0 3 0 0 0 130
6 9 5 136 451 2 210 8 175 18 5 5 51 72 135 26 14 0 1320
7 2 2 72 39 2 32 68 12 0 0 6 13 7 44 1 0 0 300
8 2 0 11 43 1 5 1 160 0 0 0 1 2 36 1 0 16 279
9 0 0 0 4 0 3 0 0 6 0 5 3 4 2 0 0 0 28
10 1 0 3 18 0 9 0 6 0 19 0 0 1 4 4 0 1 67
A 3 0 2 94 4 30 0 6 11 1 6701 2058 990 155 7 4 3 10,068
B 19 1 37 421 1 191 3 85 15 3 491 2392 2318 620 25 22 0 6645
C 1 0 1 31 0 12 0 3 5 1 362 320 1062 48 2 3 0 1853
D 47 6 99 742 3 420 12 128 4 10 44 114 342 3881 22 11 1 5888
E 6 2 12 132 1 24 1 34 0 5 9 11 26 173 56 4 0 496
F 2 0 2 57 0 11 0 7 1 0 49 63 67 47 5 15 0 326
G 0 0 0 0 0 0 0 0 0 10 0 1 1 5 3 0 25,811 25,832
Sum (2009) 273 186 1440 3684 92 1196 158 1100 66 86 7682 5044 4908 5403 175 80 25,834

*Rows indicate LCZ types in 1999, columns indicate LCZ types in 2009.

Table 5
Land cover transformation matrix of the PRD region from 2009 to 2014 (km2).

LCZ class 2014

1 2 3 4 5 6 7 8 9 10 A B C D E F G Sum (2009)

2009 1 75 19 16 86 1 5 1 12 0 1 0 1 2 24 4 25 0 273
2 5 80 54 17 2 3 1 14 0 2 0 0 0 0 6 1 0 186
3 16 186 841 81 4 46 50 168 2 7 1 5 1 12 13 8 0 1440
4 110 78 226 1653 18 352 26 195 19 19 37 214 42 466 39 190 0 3684
5 1 8 5 35 17 15 1 1 0 0 1 2 2 2 1 0 0 92
6 11 20 112 103 6 289 38 34 13 3 9 57 54 297 31 118 0 1196
7 1 8 45 10 2 16 62 4 0 0 0 1 1 5 2 2 0 158
8 12 25 190 80 2 36 3 653 2 9 3 11 3 25 23 21 0 1100
9 0 0 1 7 0 9 0 1 15 0 5 17 5 4 0 1 0 66
10 5 2 5 4 0 2 0 18 0 21 0 1 1 1 16 6 4 86
A 1 0 1 52 0 10 0 2 10 0 6163 591 679 141 2 30 0 7682
B 1 1 5 78 1 34 2 6 18 1 1143 1538 1567 539 5 105 1 5044
C 2 1 5 80 0 45 2 7 21 1 757 992 2248 607 4 136 1 4908
D 42 9 34 451 5 305 26 51 24 6 82 302 237 3572 31 221 5 5403
E 3 3 8 11 0 8 1 19 0 3 3 2 5 14 64 29 1 175
F 2 1 2 8 0 5 0 5 0 1 1 7 4 10 4 31 0 80
G 2 0 0 1 0 0 0 0 0 0 4 0 1 0 4 1 25,821 25,834
Sum (2014) 290 439 1549 2757 59 1181 216 1190 125 75 8210 3739 4851 5718 249 926 25,834

*Rows indicate LCZ types in 2009; columns indicate LCZ types in 2014.
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multi-temporal LCZ mapping.

3.2. Land surface temperature analysis in PRD

Table 6 shows the patterns of LST in the PRD region in 2000, 2009 and 2015, respectively. In general, the higher LST is located in
the built-up areas, mainly compromised of the downtown areas of Guangzhou, Dongguan, Foshan, Shenzhen, Hong Kong, Zhuhai,
and Macao. In addition, there is no apparent gap of the warmer surface (identified as red in the images) among different cities,
indicating the urbanization has led to the built-up areas in different cities merged into one large area. The northeast of the PRD region
with less urbanization is also under high LST according to the map.

For the daytime images, there is a significant expansion of areas of high LST value along the coast of Guangzhou, Hong Kong,
Macao, Shenzhen, and Zhuhai. Furthermore, significant growth of LST heat intensity is captured from the LST images and the urban
areas in 2015 has reached the highest LST in comparison of 2000 and 2009, which may indicate a poor thermal environment in the
red areas.

For the night-time situation, the areas with high LST value are not noticeably detected in 2000. However, the night-time image in
2009 identified an obvious increase of LST magnitude in the whole region. The area of high LST value also has large expansion in
comparison with the LST in 2000. Also, the night-time LST pattern is different from that of daytime. Higher LST is more significant in
the west of the urban areas such as Guangzhou, Foshan, and Zhuhai. The night-time LST pattern in 2015 is similar with that of 2009
during the second period.

Mean and standard deviation (SD) of LST for 2000, 2009 and 2015 and the corresponding LST differences are listed in Table 7.
The average summer LST and SD kept growing during the two sub-periods. From 2000 to 2009, the average LST increased by 0.41 °C
and 1.62 °C for daytime and night-time. The SD increased from 1.75 to 2.21 during daytime and from 1.41 to 1.58 in the night-time.
During the second sub-period of 2000 to 2015, the mean summer LST growth was 0.72 °C and 0.39 °C for daytime and night-time,
respectively. The SD also rose from 2.21 to 2.60 in the daytime and from 1.58 to 1.60 in the night-time during the second sub-period.

However, the changes reported in Table 7 represent only discrete points in time and analysis of the LST data each year during the
whole period showed that there is substantial inter-annual variation in summer LST. Therefore, trends for the full period were

Table 6
LST in the PRD region in 2000, 2009 and 2015.

Time 2000 2009 2015
Daytime

Night-
time

Table 7
Mean LST, the LST difference and standard deviation of LST in 2000, 2009 and 2015 in the PRD region (°C).

2000 2009 2015

Average daytime summer LST 30.07 30.48+ 0.41 31.20+ 0.72
Average night summer LST 22.23 23.85+ 1.62 24.24+ 0.39
Standard deviation of daytime summer LST 1.75 2.21 2.60
Standard deviation of night summer LST 1.41 1.58 1.60

R. Wang, et al. Urban Climate 28 (2019) 100455
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computed as well.

3.3. Relationship between LST and land cover change

3.3.1. Land surface warming and land LST changes
The land cover changes over the period 1999 to 2014 in the PRD region were compared to LST trends. First, these trends were

calculated based on summer average (using all valid acquisitions from June to September) of the daily MODIS data for each year from
2000 to 2017. Then linear trends were derived the time series of annual summer means. Fig. 3 indicates significant LST warming with
positive trends of up to> 0.3 K/year for some parts of the PRD region. Only for a few small parts, negative trends are found, grey
areas indicate no significant trends at α < 0.05. Second, the land cover changes in the PRD region based on historical LCZ maps were
reclassified as urbanization (natural turning to built LCZ type), deconstruction (vice versa), static built (same built class in 1999 and
2014), conversion (change within built type), and natural/water (natural class without conversion). This reclassification was needed
for a number of reasons, In particular (1) considerable detail of the LCZ scheme with 17 classes technically allows for 272 different
conversion (and 17 persistent) types; (2) there is a resolution mismatch between the LCZ and the MODIS data, which means that
adjacent conversions have an impact on the LST signal at a point as well. The tends are to be even more problematic than in the static
case, since the conversion spots are patchy by nature. Hence, the LCZs were aggregated and only conversions between natural and
built types (urbanization), within built types (conversion), as well as unchanged natural and built types were considered. Fig. 4 shows
the land cover changes in the PRD region from 1999 to 2014. Finally, a visual comparison was conducted between the LST trends and
land cover changes of the PRD region. Both maps match closely, revealing great spatial accordance between the urbanization and
conversion (often related to densification or height enhancement) in Fig. 4 and the great LST warming in Fig. 3. Thus, qualitatively,
the LST changes clearly echo the land cover changes in the PRD region during the study period and most likely dominantly result
from the land cover change.

3.3.2. LST of each LCZ class
To analyze the influence of land cover change on LST, the LST in each LCZ was calculated for daytime and night-time (Fig. 5). It is

noted that the mean LST of built types is higher than that of natural LCZ types. Among built types, LCZ 2 (compact mid-rise), 8 (large
low-rise), and 10 (heavy industry) have the highest LST values at both daytime and night-time. For natural cover types, LCZ A (dense
trees), LCZ B (scattered trees), and LCZ C (bush, scrub) show relatively low mean LST values among all 17 LCZ classes. In addition,
variations within the same LCZ class are higher at daytime than at night-time.

LSTs of the majority of the LCZ classes have increased during the two periods, indicating an overall trend of surface warming

Fig. 3. LST changes from 2000 to 2017 in the PRD region. Grey areas have no significant trends at α < 0.05 confidence level.

R. Wang, et al. Urban Climate 28 (2019) 100455
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across the study area. However, it also could be related to conversion within one LCZ class or of adjacent patches, since the coarser
MODIS data necessarily integrates over somewhat larger areas. In particular, the transformation between different LCZ types
(especially urban expansion) has intensified the UHI effect by increasing the LST in the built-up LCZ classes (see Fig. 3). The only LST
decrease is identified in LCZ B (scattered trees) from 2000 to 2009. Also, there is a greater increase in the first period than that in the
second period.

3.3.3. Dominant LCZ type in SUHI zones
The LSTs have been categorized into SUHI zones and the dominant LCZ type in the SUHI zone has been identified and summarized

in Table 8. The low and medium SUHI zones with lower LST are dominated by vegetation and water, i.e. LCZ A (dense trees), LCZ D
(low plants) and LCZ G (water). These LCZ types with medium and low SUHI were constant during the 15 years in general, which can
result from the low LST and the large areas of these classes.

The high SUHI zone caused by the urbanization process is mainly comprised of two built LCZ types, LCZ 4 (open high-rise) and
LCZ 8 (large low-rise), which have large coverage and relatively higher LST among the built types. LCZ 4 (open high-rise) is the
principal LCZ type in high SUHI zones in the daytime. The prevailing LCZ type in high SUHI zones in the night has been changed from
LCZ 4 (open high-rise) to LCZ 8 (large low-rise) in 2009. The increase of the area of LCZ 8 (large low-rise) which mainly belongs to
manufacturing buildings can lead to the increase of the LCZ type in the high SUHI zone. The rapid industrial and urbanization process
which can transform land cover types to manufacturing buildings can aggravate the SUHI effect in the PRD region in the future. In
addition, the construction of increasing LCZ 4 (open high-rise) can also intensify the SUHI effect in the PRD region.

3.4. Implementation for urban planning

LCZ data produced by WUDAPT are further shown to be effectively and efficiently integrated with land cover change and LST
analysis in this study. The spatiotemporal distribution of LCZ can be used for land cover change analysis and LST studies, which are
beneficial for understanding urban development, land use planning as well as the thermal environment to minimize the negative
impact of urbanization. Rapid urban construction has led to the deterioration of the urban thermal environment; hot spots expanded
from several cities into merging city groups. Apart from the positive influence of city group mode on urban development, its adverse
impact on the urban thermal environment should also be taken into account, especially for regional planning, such as “The PRD
Reform and Development Plan (2008-2020)”. This plan aims to improve the quality of town planning and the management of local
urban development through three key aspects: “optimizing spatial plan via making appropriate land use zonings”, “making intensive
land use development” and also “conducting environment protection for sustainable development” (National Development and

Fig. 4. Land cover changes from 1999 to 2014 in the PRD region
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Fig. 5. (a)–(f). LST of each LCZ class during daytime and night-time in 2000, 2009 and 2015.
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Fig. 5. (continued)
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Fig. 5. (continued)
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Reform Commission, 2008). Regarding LCZ classes, in the study period, compact LCZs (LCZ 1–3) were mainly converted from open
LCZ types and natural cover types. LCZs with low building height tend to rebuild as LCZ classes with higher heights during the
urbanization process. When looking into the thermal environment, LCZ 8 (large low-rise) has the largest increase of LST at daytime,
and LCZ 1 (compact high-rise) and LCZ 6 (open low-rise) are the two with the largest increase at night- time (Appendix D). LCZ 4
(open high-rise) and LCZ 8 (large low-rise) also contributed largely to the SUHI in the PRD region. The areas of LCZ 1 (compact high-
rise) LCZ 4 (open high-rise), and LCZ 8 (large low-rise) also rose dramatically during this period. Thus, when implementing urban
planning for central areas of this mega-urban region, compact LCZ types, particularly compact high-rise types, should be paid more
attention, since this type has more impact on the thermal environment. The areas of LCZ 4 (open high-rise) and LCZ 8 (large low-rise)
should also be restricted with proper greenery plan in between.

4. Conclusion

Land cover change during the process of urban expansion of the PRD region has relevant influences on local climate spatial
patterns, as evidenced by the UHI phenomenon. LCZ mapping and MODIS thermal images were utilized to analyze these processes
resulting in the following conclusions. Firstly, a significant change in land cover took place in this area over the 15 years of the study.
Urbanization in this region comprises transformation from natural land covers to built types, densification, and vertical enhancement
of existing urban structures. Second, the land surface was warming with a speed of up to> 0.3 K/year and hot area expanded in
accordance with urbanized areas in the PRD region during the study period. Daytime LST increase is more significant than that of
night-time LST. Finally, this warming trend is clearly related to land cover change, in particular, urbanization and conversion
between and possibly within LCZ types. The expansion of LCZ built types has led to significant LST increase in these areas. There is
some evidence, that in particular the large extension of LCZ 8 (large low-rise) and LCZ 6 (open low-rise) results in high LST increase.
LCZ 4 (open high-rise) and LCZ 8 (large low-rise) are the dominant LCZ types in the high SUHI zones. Thus land use planning and
management play a crucial role in SUHI reduction. Proper and reasonable distribution of LCZ with lower surface temperatures is
advisable to mitigate the influence of UHI during the process of urban development. The findings of this study can also help re-
searchers to better understand the influence of LCZ on local climate variations for other Chinese megaregions. The results will be
beneficial to land cover change, and LST comparison studies for cities with different urban context, the latter including the spatial and
temporal pattern, their relationship and inner mechanism. In addition, this study also helps provide a deep understanding of the
impact of urbanization on LST for urban planners, government officials and researchers. One of the limitations of this study is the
quality and resolution of the Landsat and MODIS images. More thermal earth observation missions and further studies are needed to
apply higher resolution satellite images to improve the accuracy of the results. Also, there are significant differences between urban
air temperature and surface temperature. Urban air temperature acquired from mobile measurement can be helpful to provide more
accurate thermal characteristics of different LCZ classes in the future study.
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Table 8
Dominant LCZ type in SUHI.

Year Time Low SUHI Medium SUHI High SUHI

2000 daytime LCZ D (low plants) LCZ G (water) LCZ 4 (open high-rise)
Night-time LCZ A (dense trees) LCZ A (dense trees) LCZ 4 (open high-rise)

2009 daytime LCZ A (dense trees) LCZ A (dense trees) LCZ 4 (open high-rise)
Night-time LCZ A (dense trees) LCZ A (dense trees) LCZ 8 (large low-rise)

2015 daytime LCZ A (dense trees) LCZ A (dense trees) LCZ 4 (open high-rise)
Night-time LCZ A (dense trees) LCZ A (dense trees) LCZ 8 (large low-rise)
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Appendix D. Daytime and night-time LST increase in each LCZ (°C) from 2000 to 2015

LCZ 1 2 3 4 5 6 7 8 9 10 A B C D E F G

Daytime 2.58 3.56 3.74 2.8 3.35 2.68 3.45 5.8 2.11 5.07 0.97 1.04 1.14 2.24 4.13 2.64 2.78
Night-time 2.00 1.53 1.53 1.51 1.28 2.04 1.61 1.02 1.84 1.69 1.33 1.28 1.09 1.25 1.58 1.74 1.28
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