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A B S T R A C T   

Cities produce over 70% of global carbon emissions and are thus crucial in driving climate change. Urban carbon 
emissions may continue to increase especially in those less-developed countries and regions which are still under 
rapid urban development. Policymakers need to find ways to effectively control and reduce carbon emissions. 
Thus, spatial modeling methods to map and predict urban carbon emissions have been developed to meet these 
needs. This paper examines the progress of the spatial modeling of carbon emissions and the relationship be-
tween urban form and carbon emissions in China by reviewing more than 100 peer-reviewed journal articles in 
the Scopus database. The latest prediction methods and techniques are described in the paper. Their advantages 
and limitations are then discussed. Urban forms have a significant influence on carbon emissions and have been 
applied in spatial modeling studies in other countries. However, this review has identified the lack of urban form 
data and high-resolution inventories from existing studies in China. Future developments in the spatial modeling 
in China should therefore have a fine spatial resolution and incorporate open and high-quality urban form data, 
including urban morphology and land use/land cover.   

1. Introduction 

Carbon dioxide (CO2) is the principal anthropogenic greenhouse gas 
(GHG) and the major cause of climate change (IPCC, 2007). The global 
atmospheric CO2 concentration has risen from about 280 ppm before 
industrialization to 409.8 ppm in 2019 (Lindsey, 2020). To achieve the 
goal of controlling temperatures for climate change mitigation, carbon 
emissions need to be significantly reduced (Pachauri et al., 2014). Cities 
contribute 71%–76% of global carbon emissions from energy activities, 
so they are the major focus for carbon emissions mitigation (Pachauri 
et al., 2014). The world population from 2012 to 2050 is anticipated to 
rise mainly in cities according to the United Nations population estimate 
(UN DESA, 2018). Global carbon emissions are foreseen to grow due to 
the projected urban development. Since urban carbon emission in-
ventory is the foundation for attempts to mitigate carbon emissions, 
policymakers and the scientific community have made significant efforts 
to establish carbon emission inventories to deal with climate change. 

Most previous investigations on emission modeling used 
production-based statistics at the administrative units level (e.g. pro-
vincial or city level) based on Intergovernmental Panel on Climate 
Change (IPCC) or provincial-level Guidelines (Clarke-Sather et al., 2011; 
Shan et al., 2017). Although the inventories are authoritative, the spatial 
variations and the energy consumption within the administrative unit 
cannot be revealed, which limits their further impact on the interdisci-
plinary actions to climate change mitigation (Cao et al., 2014). 

The spatial modeling of urban carbon emissions can facilitate the 
development of spatially distributed emission inventories and reveal the 
spatial patterns within an administrative unit (Ou et al., 2015b). These 
inventories can provide a spatial visualization of the carbon emissions 
from both production and consumption, enabling the practical and 
realistic assessment of emission mitigation, such as identifying the car-
bon emission hotspots, energy activities responsible for high emissions, 
etc. (Kanemoto et al., 2016). They can also be integrated with other 
spatial data to facilitate interdisciplinary cooperation to reduce carbon 

* Corresponding author. 
E-mail address: renchao@hku.hk (C. Ren).  

Contents lists available at ScienceDirect 

Journal of Cleaner Production 

journal homepage: www.elsevier.com/locate/jclepro 

https://doi.org/10.1016/j.jclepro.2021.128792 
Received 19 February 2021; Received in revised form 27 July 2021; Accepted 21 August 2021   

mailto:renchao@hku.hk
www.sciencedirect.com/science/journal/09596526
https://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2021.128792
https://doi.org/10.1016/j.jclepro.2021.128792
https://doi.org/10.1016/j.jclepro.2021.128792
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclepro.2021.128792&domain=pdf


Journal of Cleaner Production 319 (2021) 128792

2

emissions. Consequently, a variety of approaches have been developed 
and used to spatially model the carbon emissions in different cities (Cai 
et al., 2018b; Doll et al., 2000). 

China has been industrializing and urbanizing at an accelerating 
pace since the beginning of its reform and opening in 1978. The rapid 
development has unavoidably caused massive carbon emissions which 
impeded the sustainable development of China and impacted the global 
climate (Paltsev et al., 2012). China has become the country that emits 
the highest amount of carbon emissions in the world since 2006 
(Netherlands Environmental Assessment Agency, 2007). Moreover, 
China’s carbon emissions are predicted to keep increasing until 2025 as 
a consequence of the continuous industrial transformation and eco-
nomic growth (Zhou et al., 2019). Consequently, the Chinese govern-
ment has set ambitious GHG mitigation targets and pledged to be carbon 
neutral by 2060 (Wang, 2009; Xinhua, 2020). 

The development of the spatial inventory of carbon emissions can 
therefore serve as a cutting-edge tool for governments at different levels 
to meet China’s timely need for achieving carbon neutrality. Besides, 
urban development is a vital element for carbon emission and its 
reduction. City planning and space optimization policies, particularly 
those targeting urban form, are growingly significant in carbon emis-
sions control and mitigation (Wang et al., 2015). In order to further 
develop our knowledge in controlling and reducing carbon emissions for 
China, it is necessary to review the past developments and studies on the 
spatial modeling of carbon emission to understand their capabilities, 
advantages, and limitations. A comprehensive understanding of the in-
fluence of urban forms on carbon emissions is also essential for the 
implementation of low carbon strategies in China. 

Therefore, this study aims to perform a systematic review to syn-
thesize the available literature on 1) the existing methodologies and data 
for the spatial modeling of urban carbon emissions in China, and 2) the 
relationship between the urban form and carbon emissions in China. 
This study is the first one to review the spatial inventories of urban 
carbon emissions in China. Previous reviews on CO2 inventories gener-
ally focused on the statistical approach (Chen et al., 2017; Yang et al., 
2016). Although they pointed out the shortcomings of the existing sta-
tistical approach in China, this manuscript will provide new insights and 
perspectives beyond existing reviews since it investigates the spatial 
inventories within a city boundary, which can support the control and 
mitigation of carbon emissions regarding urban planning and space 
optimization strategies. Moreover, this study will identify the limita-
tions of the current studies to recommend future directions of the spatial 
inventories. 

Therefore, the major objectives are determined: 

To select and document the relevant and the most up-to-date peer- 
reviewed journal articles in the Scopus database; 
To identify the key methodologies and developments in the spatial 
modeling of carbon emissions; 
To explore the relationship between the urban forms and the carbon 
emissions; 
To analyze the strengths and weaknesses of the reviewed spatial 
models; 
To review and discuss their current applications and limitations; 
To explore the future needs and trends in the spatial model 
development. 

2. Methodology 

Systematic reviews are considered to be the most impartial and 
efficient method for analyzing existing scientific research (Haddaway 
et al., 2015). Hence, we performed a systematic review of the research 
projects and studies on the spatial modeling of China’s urban carbon 
emissions. We adopted the procedure of the PRISMA Statement form 
(Moher et al., 2009) which has been applied in many urban studies 
(Asadzadeh et al., 2017). There are four stages of the PRISMA Statement: 

Identification, Screening, Eligibility, and Analysis (Moher et al., 2009). 
Under the Identification process, keywords were used to search the 

literature database and identify possibly related studies. Scopus was 
chosen as the search engine in this study because it focuses on peer- 
reviewed academic articles and covers a broad scope of multi- 
disciplinary fields. Only peer-reviewed articles were identified as rele-
vant studies in this review. 

The identification in this study mainly contains two categories, 
category 1 is the searching on spatial modeling of urban carbon emis-
sions in China, category 2 is about the relationship between urban forms 
and carbon emissions (Table 1). Keywords A contains the keywords that 
were used for both two categories. To incorporate all the available 
literature in the database, “carbon emissions” and all the synonyms of 
carbon emissions such as “CO2 emission” OR “carbon dioxide emission” 
OR “greenhouse gas emission” were used in keywords A. Also, the study 
area “China” was used to limit the search results. Keywords B includes 
the keywords which are only used in one category. In category 1, the 
keywords “spatial modeling” OR “mapping” were incorporated into the 
search criteria to filter the papers relevant to the development of spatial 
inventories. “Urban” OR “city” was also included in the keywords to 
filter the research focusing on fossil fuel carbon emissions from trans-
port, business, residential and industrial sectors. For the searching of 
literature in category 2, the keyword “urban form” was added to the 
searching engine. The identification process based on the selected key-
words was performed for the article title, abstract, and keywords of the 
papers. Also, this study covered the most up-to-date literature as of May 
2021. 

During the process of screening, the acquired literature that is not 
relevant to this study was removed by manually checked the titles, ab-
stracts, and keywords. All the obtained records were screened to exclude 
duplicate and unrelated documents. Thirdly, all the records after the 
previous two steps were examined completely to select the most relevant 
results, including the main text and the references. Finally, the necessary 
information on the related literature was extracted, processed, and 
synthesized in the analysis step. 

3. Results 

3.1. Overall results 

After the searching and analysis steps, there are 106 papers in total, 
where 82 papers are in category 1 and 24 papers are in category 2. For 
category 1, the results were mainly classified based on the methods. It 
can be found that there are four commonly used methods: 1) top-down 
analyses that assign the emissions from a coarse spatial unit to a finer 
resolution; 2) bottom-up models that aggregate the fine emission data 
such as point source emissions to the desired spatial grid (Cai et al., 
2018b; Wang et al., 2014); 3) carbon satellite observations which 
convert the CO2 concentration from carbon satellites; and 4) hybrid 
method involving both bottom-up and top-down approach. For category 
2, the urban form can be described in terms of land use/cover and urban 
morphology (Ren et al., 2017). Therefore, the retrieved literature in 
category 2 was categorized into the impact of urban morphology and the 
impact of land use/land cover characters. 

Table 1 
Summary of all the keywords used during the identification phase.  

Categories Keywords A Keywords B  

1. Urban carbon emissions 
mapping in China 

“carbon emission” OR “CO2 
emission” OR “carbon dioxide 
emission” OR “greenhouse gas 
emission” 
AND “China” 

AND (“spatial 
modeling” OR 
“mapping”) 
AND (“urban” OR 
“city”)  

2. The relationship 
between urban forms 
and carbon emissions 

AND “urban form”  
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3.2. Top-down method using nighttime lights 

3.2.1. Data and adjusted indexes 
Top-down methods allocate the carbon emissions within a large 

spatial unit to a high spatial resolution by adopting some algorithms or 
proxy data such as land use (Chuai and Feng, 2019), road length (Song 
et al., 2020). With the development of remote sensing techniques, the 
nighttime light (NTL) data have been the most frequently used proxy to 
distribute the statistical carbon emissions at the jurisdiction level. The 
NTL is a kind of satellite observation and derivative product to detect 
man-made lights, hence offering a unified, spatially explicit, continuous, 
and prompt monitoring of the earth’s surface during nighttime (Elvidge 
et al., 1997, 2013). Previous research has indicated that the NTL data 
can potentially reflect the socioeconomic conditions and human activ-
ities that are relevant to energy demand (Doll et al., 2000; Small et al., 
2005; Sutton et al., 2001). Moreover, there is an assumption that the 
brightness value of the NTL is positively correlated to the carbon 
emissions produced by energy activities of the same pixel (Han et al., 
2018). Hence, the NTL is capable of detecting urban carbon emission 
variations in both spatial and temporal dimensions when combined with 
statistical emission data. 

The Defense Meteorological Satellite Program-Operational Linescan 
System (DMSP-OLS) launched in 1992, is the most widely used NTL data 
in the spatial modeling of carbon emissions due to its long time span (Lu 
et al., 2018; Meng et al., 2014; Shi et al., 2016; Wang and Li, 2016). 
Nevertheless, the DMSP data have a few notable disadvantages (Doll 
et al., 2000; Elvidge et al., 2010): low spatial resolution of 30 arc sec-
onds, oversaturation problems on bright lights in urban areas, blooming 
effect with the lights scattered from built-up areas into areas without 
light, etc. These shortcomings may diminish the correlation between 
human activities and NTL products (Letu et al., 2010), leading to 
increased uncertainties in the modeling of carbon emission in certain 
regions, especially in large urban cores with strong artificial lighting 
(Letu et al., 2011; Raupach et al., 2010). The global radiance calibrated 
DMSP NTL data have been developed by the Earth Observation Group in 
National Oceanic and Atmospheric Administration’s National 
Geophysical Data Center (NOAA/NGDC) to solve these issues (Ziskin 
et al., 2010). However, there are only a few images that have been 
calibrated so far, limiting the application of time-series analyses of the 
product (Ma et al., 2014). 

The satellite Visible Infrared Imaging Radiometer Suite onboard the 
Suomi National Polar-Orbiting Partnership (NPP-VIIRS) was developed 
as a brand-new source of NTL image by the NOAA/NGDC in 2011 
(Elvidge et al., 2013). The new NTL data have several advancements 
compared to the previous DMSP-OLS product (Elvidge et al., 2013) 
(Table 2). The spatial grid of the NPP-VIIRS data is finer (15 arc-second). 
Also, the NPP-VIIRS product has already been calibrated on the satellite 
(Elvidge et al., 2013). Moreover, the oversaturation issue does not exist 
in the NPP-VIIRS due to its more sensitive day/night spectral band, 
which can greatly enhance the capability of identifying artificial lighting 
(Liao et al., 2013). 

Recent studies have shown the progress of applying the new NPP- 
VIIRS data in carbon emission modeling (Cui et al., 2019; Ou et al., 
2015a; Zhang et al., 2020). The comparative findings indicate that the 
NPP-VIIRS data can more precisely demonstrate the spatial variations of 
residential carbon emissions than the DMSP-OLS. The emissions 
modeled by the NPP-VIIRS have larger values and more detailed spatial 
patterns in built-up areas, thus the NPP-VIIRS data are more effective in 
enhancing the knowledge of the regional differences of carbon emissions 
and serving as a benchmark for decomposing the low-carbon goals into 
each subunit (Ou et al., 2015a; Zhao et al., 2018). Moreover, some 
modeling studies have integrated the NPP-VIIRS and the DMSP-OLS to 
expand the time span of the NPP-VIIRS (Lv et al., 2020; Zhao et al., 
2019). These studies have demonstrated the feasibility and superiority 
of using the NPP-VIIRS to model carbon emissions, as well as the pos-
sibility to facilitate other scientific applications that have adopted the 
DMSP-OLS product. 

In particular, some studies employed adjusted nighttime light in-
dexes to eliminate the oversaturation effect of DMSP-OLS by involving 
vegetation information. Zhang et al. (2013) established the 
vegetation-adjusted NTL urban index (VANUI) by integrating the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) normalized dif-
ference vegetation index (NDVI) products with the NTL data (Equation 
(1)). The VANUI is easy to compute and can characterize changes in light 
density within urban areas. Meng et al. (2017) applied an improved 
VANUI to model the carbon emissions in China by incorporating NTL, 
MODIS NDVI, population density, and a Water-masked map from ESRI. 
The findings showed that the proposed improved index can better reveal 
the spatial patterns of human activities. The improved index is also 
helpful to decrease the modeling error of carbon emissions across 
different cities and differentiate the heterogeneity in emissions within a 
city. The root mean square error (RMSE) of the improved VANUI model 
is 5.9% lower than that of the original VANUI model. 

VANUI=(1 − (NDVI))(NTL) (1) 

However, the VANUI, which is calculated based on NDVI, is not 
effective to capture the intra-urban change in fast-growing cities 
because NDVI is less sensitive in built-up areas with low vegetation 
coverage (Huete et al., 2002). At the same time, VANUI is still affected 
by the blooming problem of the DMSP-OLS product. 

Further to the development of VANUI, the enhanced vegetation 
index (EVI) adjusted nighttime light index (EANTLI) has been developed 
(Zhuo et al., 2015). The index is computed by integrating the MODIS EVI 
and the DMSP-OLS (Equation (2)). Since the EVI is capable of offering 
information that is negatively and closely correlated with features of the 
urban areas (Liu et al., 2015), it has been confirmed that the index can be 
easily used to deal with saturation, identifying the changes of the NTL 
brightness value in the built-up areas. Therefore, it is very helpful for 
analyzing the urban structure and modeling carbon emissions (Zhuo 
et al., 2015). Moreover, the accuracy assessment based on the statistical 
carbon emission at the city level also shows that EANTLI is not only 
suitable and effective for modeling carbon emissions in lighting areas, 
but also in non-lighting areas. 

EANTLI={

1 +（NTLnorm − EVI）
1 − （NTLnorm − EVI）× NTL, EVI > 0.01

0, EVI ≤ 0.01
(2)  

where NTL represents the digital number of the NTL data, NTLnorm means 
the normalization of NTL, and EVI refers to the EVI data retrieved from 
MODIS data. 

Liu et al. (2018) combined the EANTLI with LandScan population 
data to map the urban carbon emissions in China. Zhuo et al. (2015) and 
Zhao et al. (2018) compared the accuracies of the VANUI and the 
EANTLI in mapping carbon emissions. Their results demonstrated that 
the EANTLI is capable of detecting significantly more spatial details 
within built-up areas than VANUI. Also, the EANTLI is more similar to 

Table 2 
Characteristics of DMSP-OLS and NPP-VIIRS.  

Satellite Spatial 
resolution 

Bands Period Onboard 
calibration 

Saturation 

DMSP- 
OLS 

30 arc 
seconds 

Nightlight, 
one thermal 
infrared (10 
μm) 

1992–2013 No Yes 

NPP- 
VIIRS 

15 arc 
seconds 

Nightlight, 
21 
additional 
bands 
spanning 
0.4 to 13 μm 

2012- 
present 

Yes No  
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the calibrated NTL compared to VANUI. Finally, the EANTLI more 
accurately predicted the consumption of electricity for 166 Chinese 
prefecture-level cities and the R-squared value increased by 11.8% in the 
linear regression model between the predicted electricity power use and 
the statistical carbon emission (Zhuo et al., 2015). 

3.2.2. Regression models 
There are generally two main procedures for downscaling statistical 

carbon emissions at the jurisdiction level. The first procedure is data 
preparation, including the calculation of statistical carbon emissions at 
the administrative level from energy reports, the calibration of the NTL 
data, and the extraction of urban areas. Secondly, by establishing the 
relationship between statistical carbon emissions and NTL, an emission 
value is assigned to each pixel of NTL on this basis, and integrated into 
the urban scale. 

Simple regression methods can be utilized to build the linear rela-
tionship between NTL data carbon emissions. For instance, Meng et al. 
(2014) predicted the urban carbon emissions for China based on the 
statistical relationship between the DMSP-OLS product and provincial 
carbon emissions. Lu and Liu (2014) adopted the DMSP-OLS product to 
acquire an index to represent human activities and verified the 
assumption that counties with close carbon emissions would cluster in 
space. Zhao et al. (2020) used a linear regression model to map the 
carbon emissions from 2000 to 2017 and explored the relationship be-
tween CO2 emissions and nighttime land surface temperature in the 
Yangtze River Delta (YRD) Region. 

The reliability of the simple linear relationship between NTL and 
statistical emissions can be weakened by the lack of data verification 
(Wang, S. et al., 2014). Besides, only the spatial or temporal relationship 
can be explored by linear regression models, which may cause de-
viations in the modeling of carbon emissions in both space and time 
dimensions. Panel data analysis can link the statistical emissions and 
NTL in spatiotemporal dimensions simultaneously. Therefore, panel 
data models have already been used for carbon emissions estimation 
(Cui et al., 2019; Han et al., 2018; Shi et al., 2016; Wang and Liu, 2017; 
Zhang et al., 2021). 

Moreover, the geographical and temporally weighted regression 

(GTWR) model has also been used to build the relationship between 
statistical carbon emissions and NTL data due to its considerations of 
spatial and temporal heterogeneity of CO2 emissions. Using the GTWR 
and NPP-VIIRS, Zhang et al. (2020) mapped CO2 emissions from coal 
boilers, thermal power plants, and natural gas boilers in 15 northern 
provinces from 2012 to 2017 with a resolution of 5 km × 5 km. 

3.3. Bottom-up method 

Bottom-up methods to model urban carbon emissions generally 
integrate emissions at a point or sectoral level and then allocate the 
emissions into the designated spatial unit (Cai et al., 2018b). The rele-
vant studies are summarized in Table 3. 

There are some open bottom-up inventories at the facility level, such 
as the China Cement Emission database (Liu et al., 2021) and China 
coal-fired Power plant Emissions Database (Liu et al., 2015). There are 
also other studies to develop carbon emission maps using bottom-up 
approaches. Zhang et al. (2014) proposed an analysis framework for 
carbon emissions estimation based on land use type and examined the 
spatial variations of carbon metabolism in Beijing. Household and per-
sonal surveys have also been applied to plot the carbon emissions (Rong 
et al., 2020; Yang et al., 2015). Wu et al. (2018) established a database 
for energy use intensity (EUI) from the Shanghai building energy effi-
ciency monitoring platform for each building function and mapped the 
emissions of Shanghai based on the EUI and the building function. A 
traffic allocation model was deployed to simulate traffic in road net-
works through a gasoline consumption function (Zhang et al., 2018), i.e. 
the User Equilibrium (UE) in the JICA-STRADA 35 platform (Tschar-
aktschiew and Hirte, 2010). With the advances in big data development, 
taxi GPS trajectory data from taxi companies have been adopted to map 
high-resolution taxi emissions by daily travel (Luo et al., 2017; Xia et al., 
2020; Zhang, J. et al., 2018; Zhao et al., 2017). 

3.4. Carbon satellite observations 

Employing carbon satellites to model urban carbon emissions is 
another relatively new approach. Carbon satellites are the key data 

Table 3 
Literature on the data used in the bottom-up methods.  

Study area Resolution Transportation sector Building sector Industrial data Reference 

Shanghai point 1054 household surveys (transport mode, 
petrol consumption) 

1054 household surveys (energy use at home 
and demographic characteristics) 

No data Yang et al. 
(2015) 

Kaifeng point No data 3895 household surveys (energy use features, 
cognition and preferences and demographic 
characteristics) 

No data Rong et al. 
(2020) 

Beijing 500 m No data Empirical conversion coefficients from IPCC for 
commercial and residential land use type; land- 
use maps of Beijing in the government 
databases 

Empirical conversion coefficients 
from IPCC for industrial land use 
type; land-use maps of Beijing in 
the government databases 

Zhang et al. 
(2014) 

Shandong 500 m Fleet size, annual average vehicle- 
traveled distance, vehicle age 

No data No data Sun et al. 
(2016) 

Shanghai 100 m No data Building energy use from the 2016 Shanghai 
Statistical Yearbook and public building energy 
efficiency monitoring platform; building use 
predicted from building morphology and Point 
of Interest (POI) of the OpenStreetMaps 

Shanghai Statistical Yearbook Wu et al. 
(2018) 

Changzhou Line (road 
link) 

Origin-Destination data from the survey 
of the individual trip in Changzhou 

No data No data Zhang et al. 
(2018) 

Hangzhou 500 m Taxi GPS trajectory data for 10,000 taxis, 
household travel questionnaires, POI data 

No data No data Xia et al. 
(2020) 

seven selected 
districts in 
Wuhan 

500 m Taxi GPS trajectory dataset for 6500 taxis 
from a taxi company, travel 
questionnaires from Center for Social 
Survey Research of Wuhan University, 
POI data 

No data No data Zhao et al. 
(2017) 

Beijing 100 m Taxi GPS trajectory dataset No data No data Zhang et al. 
(2018) 

Shanghai 100 m Taxi GPS trajectory dataset for 13,675 
taxis from a taxi company 

No data No data Luo et al. 
(2017)  
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source for observing regional and global CO2 distributions (Crisp and 
Miller, 2010; Yoshida et al., 2011). The CO2 concentration obtained by 
satellite observations has the advantages of global coverage, frequent 
temporal resolution, and uniform observation, thus the spatiotemporal 
changes in atmospheric CO2 concentration can be reflected (Yang et al., 
2019). At present, the satellites with public access include the Scanning 
Imaging Absorption Monitoring Spectrometer for Atmospheric Char-
tography (SCIAMACHY) from Europe, Orbiting Carbon Observatory 2 
(OCO-2) and OCO-3 from the USA, the Greenhouse Gases Observing 
SATellite (GOSAT) and GOSAT-2 from Japan, and the Chinese carbon 
dioxide observation satellite (TanSat) from China (Table 4). 

The column-average dry air mole fraction of CO2 (XCO2) enhance-
ments from the satellite observations are positively correlated with fossil 
fuel carbon emissions from human activities. Therefore, the XCO2 can be 
adopted to quantitatively predict anthropogenic CO2 emissions in a 
data-driven way (Yang et al., 2019). For example, Hakkarainen et al. 
(2016) employed the XCO2 obtained from the OCO-2 to develop the first 
direct observation of anthropogenic CO2 for the regions with high 
pollution including East Asia, central Europe, and the eastern USA. Yang 
et al. (2019) developed a method for modeling fossil fuel CO2 emissions 
in China by an artificial neural network based on the XCO2 generated 
from GOSAT. In order to estimate the CO2 levels in China, Wang et al. 
(2011) used the level 3 products of XCO2 obtained from the SCIAMACHY 
with a spatial resolution of 0.5◦, land cover maps, and emission in-
ventories of the Regional emission inventory in Asia (REAS) dataset. 
Yang et al. (2018) used the observations from the TanSat satellite to 
generate the first Tansat global XCO2 maps. 

3.5. Hybrid method 

Hybrid approaches involving both bottom-up and top-down methods 
have been implemented to retain the accuracy of the bottom-up method 
and the efficiency of the top-down method. The central government and 
planning departments in China have produced some national spatial 
inventories of carbon emission using hybrid methods with open access. 
For example, the China High Resolution Emission Database (CHRED) 
was created by the Chinese Academy for Environmental Planning (Cai 
et al., 2018b). Among all the available emission data sources in China, 
the CHRED has the finest spatial resolution so far (1 km). The dataset 
was created primarily based on point emission sources from the indus-
trial sector and complementary socio-economic information of Main-
land China. Industrial emissions were modeled by the bottom-up 
approach, taking advantage of the point emission sources at the facility 
level containing approximately 1.5 million enterprises from the First 
China Pollution Source Census (FCPSC) dataset. The FCPSC may be 
China’s first comprehensive census of energy use at the national level. 

The FCPSC contains detailed information on fossil fuel consumption and 
industry location at the facility level. It also includes 
district/county-level residential energy consumption. Emissions from 
the transport, services, and agricultural sectors of the CHRED were 
disaggregated from statistical data using social-economic and urban 
land use data using top-down approaches. Statistical emissions from the 
residential and agricultural sectors at the province level were down-
scaled equally to the grid of the corresponding land use type generated 
from remote sensing imaging and population data. Finally, the emissions 
from the different sectors were synthesized into one database. In addi-
tion, Wang, J. et al. (2014) constructed a high spatial-resolution (10 km) 
map of carbon emissions for China, with emissions from the industrial 
and residential sectors also generated from the FCPSC dataset. Hao 
(2015) mapped the industrial, enterprise and residential emissions from 
the FCPSC dataset, and used weights of road type, population, and land 
use as proxy data to disaggregate transportation and agriculture 
emissions. 

The standardized CHRED framework has been used for cities and 
regions for more precise and localized results. Cai and Wang (2013) and 
Cai and Zhang (2014) established a carbon emission inventory in Tianjin 
and Shanghai at a 1 km resolution and discussed the CO2 emissions 
within different spatial boundaries. In addition, the emissions within 
four spatial boundaries were compared according to the carbon emission 
maps of Tianjin (Cai and Wang, 2013). Cai used the same framework to 
model the carbon emissions for Chongqing (Cai, 2014), Shanghai (Cai 
and Zhang, 2014), and cities in the YRD region (Cai and Wang, 2015), 
Jing-Jin-Ji (Beijing-Tianjin-Hebei) region (Cai et al., 2018a), and further 
improved the methodology by utilizing localized datasets at finer spatial 
resolutions. 

Tsinghua University developed The Multi-resolution Emission In-
ventory for China (MEIC, http://meicmodel.org/) (Li et al., 2017; Zheng 
et al., 2018). The dataset contains the spatial distribution of ten air 
pollutants and CO2 in mainland China with the finest grid of 0.25◦ ×

0.25◦. The inventory has 5 sectors, including power, industry, residence, 
transportation, and agriculture. The carbon emissions from power, 
cement, and steel industries are generated from two bottom-up in-
ventories, i.e., the China Cement Emission database (Liu et al., 2021) 
and Global Power Emissions Database (Tong et al., 2018). Important 
proxy data in the top-down method for downscaling emissions include 
population, roads, and power plants. 

Apart from using the standardized framework, localized hybrid 
methods have also been applied in many cities. For instance, Dai et al. 
(2020) produced the carbon emission database for Jinjiang city, China 
with a spatial resolution of 30 m and 500 m using a hybrid approach. 
The industrial emissions were calculated at the point level by a 
bottom-up method. Emissions in other sectors were allocated to the 
spatial grid based on spatial proxies such as population map, land use, 
and NTL data using top-down approaches. Similar studies have been 
conducted for Changxing (Liu et al., 2020) and Shanghai (Zhu et al., 
2019) with industrial emissions at point level, road emissions at street 
level, and building emissions at the area level. Zhao et al. (2012) used 
the bottom-up method to estimate point-level industrial emissions and 
employed GDP and population to downscale provincial emissions in 
China at the resolution of 0.25◦ × 0.25◦. Furthermore, Cai et al. (2020) 
adopted the hybrid method for developing the spatial inventory in Hong 
Kong with a resolution of 100 m. Industrial and airport emissions were 
modeled using the bottom-up method. Urban form and traffic flow were 
used as proxies for building and traffic emissions respectively in the 
top-down approach. 

3.6. Impacts of urban form on carbon emissions 

3.6.1. Impacts of urban morphology 
It is found that the urban complexity, urban compactness, and urban 

development patterns are the major indicators to characterize the urban 
morphology. The urban complexity represents the extent of the 

Table 4 
Comparison of the carbon satellites.  

Satellite Operator Spatial 
resolution 

Temporal 
resolution 

Launch 
year 

SCIAMACHY ESA 30 × 60 km Every 6 days 2002 
GOSAT JAXA, MOE, 

and NIES 
10.5 km Every 3 days 2009 

GOSAT-2 JAXA, MOE, 
and NIES 

9.7 km Every 6 days 2018 

OCO-2 NASA 1.29 × 2.25 
km 

Every 16 days 2014 

OCO-3a NASA 1.29 × 2.25 
km 

Every 16 days 2019 

TanSAT CAS 1 × 2 km, 2 ×
2 km 

Every 16 days 2016 

ESA (Envisat, a European Space Agency), JAXA (Japanese Aerospace Explora-
tion Agency), MOE (the Japanese Ministry of the Environment), NIES (the Na-
tional Institute for Environmental Studies), NASA (The National Aeronautics and 
Space Administration) and CAS (Chinese Academy of Sciences). 

a https://disc.gsfc.nasa.gov/datasets?keywords=OCO-3. 
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irregularity of the perimeter of the land lot, and urban compactness 
reflects the degree of dispersion or sparseness of the land lot (Makido 
et al., 2012). Urban development patterns include different urban 
development strategies such as the mononuclear pattern or 
multiple-nuclei pattern (Ou et al., 2019). 

Several studies revealed that the increase in urban complexity has an 
impact on increasing carbon emissions (Fang et al., 2015; Ou et al., 
2013, 2019; Shi et al., 2020; Shu et al., 2018; Wang et al., 2019). Results 
from quite a large number of studies showed the compact urban setting 
can lead to low carbon emissions and increase energy efficiency since 
the transport energy consumption can be reduced (Chen et al., 2008; Ou 
et al., 2013; Wang, M. et al., 2017; Wang, S. et al., 2017; Wang et al., 
2019). Meanwhile, there are also studies having negative opinions on 
urban compaction since it will increase residential energy consumption 
(Miao, 2017; Sha et al., 2020; Ye et al., 2015). Li et al. (2018) pointed 
out that the urban density at the neighborhood level varies for different 
types of dwelling units. 

There are also some debates on the effect of urbanization patterns on 
carbon emissions. Some studies found that polycentric urbanization can 
improve CO2 emission efficiency (Ou et al., 2013; Sha et al., 2020). 
Therefore, they suggested urban development patterns in a decentral-
ized and polycentric way in order to reduce CO2 emissions. However, 
Wang, Y. et al. (2014) pointed out that the transformation to a scattered 
and polycentric urban form in Beijing could increase driving distances, 
which could cause a significant increase in transport emissions. Also, a 
study highlighted that urban development in a multiple-nuclei pattern at 
the metropolitan level may not effectively mitigate carbon emissions 
(Wang et al., 2017). A recent study revealed that the impact of urban 
development patterns varies for cities under different development 
stages (Ou et al., 2019). 

3.6.2. Impacts of urban land use/land cover 
The interplay between carbon emissions and urban land use has also 

been investigated by previous studies. Zhang et al. (2018) explored the 
role of land use planning in reducing carbon emissions from the trans-
port sector. The construction land use and landscape fragmentation can 
increase the carbon emissions at a lower proportion and reduce the 
emissions at a larger proportion. Residential and commercial land uses 
can increase carbon emissions, while green space can decrease carbon 
emissions. However, the impact of industrial land use was found to be 
not significant in this study. Xia et al. (2020) found that land use di-
versity can decrease carbon emissions, while urban residential density 
has a positive impact on increasing carbon emissions in Hangzhou. 
Higher accessibility to water bodies and green space is also associated 
with lower carbon emissions (Ye et al., 2015). Ying et al. (2008) indi-
cated there are significant differences in carbon emissions of different 
land use patterns, in which the construction land and cultivated land are 
the two major carbon sources, while forest land and grassland are 
related to low carbon emissions. Land use change is also found to be 
associated with high emissions (Zhao et al., 2021). Guan et al. (2019) 
investigated the low carbon transport (LCT) in China and concluded that 
only the land use diversity may not be capable of changing the LCT mode 
choice for Chinese cities. Liu et al. (2016) concluded that residents living 
in a neighborhood with higher land use mix, public transit accessibility, 
and more pedestrian-friendly street design tend to travel in an LCT 
manner. Shen et al. (2020) suggested mitigating transport emissions by 
improving parking availability rather than land use reconstruction. 

4. Discussions 

4.1. Cross-comparison of the methods 

The characters of the three methods are summarized and compared 
in this section (Table 5). The top-down method using NTL data is simple 
to compute and conduct. Therefore, the approach can be applied to cities 
or regions without detailed emission data. Also, the method can be easily 

and efficiently applied to large areas as NTL data have global coverage. 
Therefore, the method has been widely applied at the regional and na-
tional scales for China. The accuracy of the method can achieve a me-
dium level of 70%–90%. However, this method cannot perform well in 
developing countries since the relationship between the NTL pixel value 
and carbon emissions is less significant in developing countries than in 
developed countries (Doll et al., 2000). This may affect the accuracy of 
the top-down method in modeling the carbon emissions in developing 
countries with rapid urbanization and industrialization like China. 
Secondly, previous studies found out that the top-down method can 
cause almost 50% per pixel error rate from DMSP-OLS data, and these 
errors are geographically correlated (Rayner et al., 2010). Thirdly, the 
top-down approach using NTL is likely to underestimate emissions from 
transportation and industrial sectors because the NTL data generally 
reflect socioeconomic characteristics instead of fossil fuel combustion 
during the night, which may not accurately predict the human activities 
relevant to transport and industrial process (Ghosh et al., 2010). 
Moreover, a higher brightness value in the NTL data does not always 
indicate higher carbon emissions since electricity generation and elec-
tricity consumption often take place in different areas (Meng et al., 
2014). Therefore, the data quality and the existing workflow of the 
top-down model still need to be improved to achieve more accurate and 
comprehensive estimates of carbon emissions. 

Through requiring more detailed data, the bottom-up method usu-
ally provides the most accurate results. In particular, the bottom-up 
method is mainly implemented by government authorities because it 
is suitable for local-scale assessment and therefore favored by governors 
at the city, district, community, or household levels. There are also 
limitations of the method. Firstly, it is difficult to conduct data collection 
since it costs extensive time, labor force, and material resources. This 
method requires accurate and detailed data about energy consumption, 
emission sources, and socioeconomic information, so it cannot be used 
in cities or regions without such data, especially for developing coun-
tries and regions where such data set is either not publicly available or 
under development (Zheng et al., 2018). Second, it is difficult to collect 
energy, emission, and socioeconomic data with the same time scale and 
consistent status. As a consequence, the applicability and comparability 
of the method are limited and it can be challenging to develop a generic 
way to model the spatial patterns of the carbon emissions across 
different cities (Jing et al., 2018). 

The carbon satellite approach is capable of developing a compre-
hensive understanding of urban carbon emissions with global coverage 
and frequent temporal resolution. Consistent satellite observations can 
be adopted to identify the carbon sources and sinks in both space and 
time dimensions. This method is likely to enhance the current emission 
inventories with the further development of satellite products. The 

Table 5 
Cross-comparison of the three methods.  

Methods Top-down 
method from 
nightlights 

Bottom-up method Carbon satellite 
observation 

Spatial 
coverage 

Global coverage Usually local coverage Global 
coverage 

Finest spatial 
resolution 

500 m Point 1 km 

Temporal 
resolution 

Monthly or 
annual 

Usually a single year Weekly, 
monthly, Or 
annual 

Accessibility Freely available Usually requiring non- 
public data 

Freely 
available 

Accuracy Medium 
accuracy (70%– 
90%) 

Usually most accurate Low accuracy 

Applications Regional, 
national-scale 
studies 

Local estimation at the 
city, district, community 
or household levels 

National-scale 
studies  
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major shortcoming of this method is the low spatial resolution, generally 
greater than 10 km, depending on the sensor. Therefore, it is mostly used 
at the global or national levels instead of the city scale at present due to 
the restrictions in resolution and accuracy. Also, it is difficult to identify 
the variations of the magnitude of the emissions in certain urban areas 
from the carbon satellite system, as the CO2 signal from the main urban 
cores can be spread out and deviated from the emission sources, which 
may result from the low resolution as well as atmospheric transmission, 
mixing and retention (Ou et al., 2015a). With the improvement of spatial 
resolution of future carbon satellites, this method can be better exploited 
in urban carbon emission modeling. 

4.2. Policy implications 

In order to recognize the importance of cities in improving energy 
efficiency and mitigating carbon emissions, the Chinese government 
aimed to encourage carbon neutrality strategies and promoted a low- 
carbon urban development demonstration project in 5 pilot provinces 
and cities in 2010 (National Development and Reform Commission of 
China, 2010). 

The understanding of the impact of urban form can therefore be 
useful in formulating the low-carbon policies for Chinese cities. 
Fundamentally, a spatial inventory of CO2 emission should be estab-
lished for each city as a reference for the investigations on the impact of 
urban form. The results from the literature generally favor a regular and 
continuous urban form for reducing CO2 emissions. Also, the accessi-
bility to greenery and water bodies can help reduce carbon emissions in 
urban areas. However, there is yet to be a clear conclusion on the impact 
of urban compaction, polycentric spatial development, commercial, and 
industrial land use. Their influences can vary significantly among 
different cities. So, decision-makers should take serious considerations 
of these factors which deserve a detailed investigation and sectoral 
scrutiny. The studies also highlighted the importance of balancing the 
impacts of urban form and the feasibility of optimizing urban form. 
China already has high population densities in urban areas, therefore 
increasing urban compactness by further densifying the urban popula-
tion to decrease carbon emissions may not always be feasible in Chinese 
cities. Land-use control may reduce emissions in some cities, but it 
usually brings higher costs. However, if policies are executed properly 
with cooperation across cities, or induce significant co-benefits, they 
could be an effective mitigation solution (Leibowicz, 2017). 

4.3. Implications from other countries 

Urban forms are found to influence the spatial distribution of carbon 
emissions; urban form data is therefore essential for constructing a more 
accurate spatial emission inventory. Some spatial modeling studies in 
other countries have already taken urban form data into account. For 
example, the United States developed the Vulcan dataset with a 0.1-de-
gree resolution (http://vulcan.project.asu.edu/research.php.). Carbon 
emissions from the various sectors including commercial, industrial, and 
residential, as well as road and non-road transport were modeled by the 
Vulcan dataset (Gurney et al., 2009). The Vulcan dataset was developed 
by a bottom-up approach using seven major datasets containing the road 
networks, spatial information of point emission sources, the floor and 
areas of buildings, etc. (Gurney et al., 2009). It is generally regarded as 
the most precise carbon emission inventory (Andres et al., 2012). 

China can learn from the low-carbon experience of Japan for its 
carbon emission mitigation for the following reasons (Ouyang and Lin, 
2017). First, the two countries shared similar economic development 
experiences (Minami, 2016). Secondly, Japan is recognized as the 
leading country for energy conservation and emission control in 
advance of other countries in the world (Honma and Hu, 2008; Ouyang 
and Lin, 2017). Scholars in Japan have developed accurate estimations 
for urban carbon emissions. Sharifi et al. (2018) proposed a standardized 
framework to obtain a synthetical understanding of urban carbon 

emissions (Fig. 1). The framework synthesized emissions from the 
building and transport sectors. The annual carbon emissions of a 
building can be determined by the EUI and the building attributes, such 
as building function and building floor. For the transport sector, carbon 
emissions were determined by the energy consumption for each trans-
port type and the corresponding emission factors. This framework has 
already been adopted to map the urban carbon emissions in Shanghai 
(Wu et al., 2018), and Tokyo (Sharifi et al., 2018). 

The modeling methods in these countries involved high-resolution 
urban form data such as the building footprint and location of the 
point sources to accurately detect the spatial patterns of the carbon 
emissions in urban areas. Consequently, the location and the emissions 
from the various sources, such as power plants, road networks can be 
retained. However, most studies in China did not adopt urban form data 
due to data availability, and only one study used urban form data (Cai 
et al., 2020). The accuracy of carbon emission data in China can be 
improved by incorporating urban form as input. 

4.4. Future research directions 

With the development of urban data science, several future di-
rections of the development of the spatial inventory can be identified 
from this review: 

Firstly, the spatial modeling studies in China generally used land use 
data, NTL or population as the elementary emission sources, ignoring 
the impacts of urban form. With the development of urban form 
extraction techniques (Ren et al., 2019), further work involving 
high-quality urban form data in the modeling process is necessary to 
obtain more accurate spatial patterns of urban carbon emission for 
Chinese cities. Also, adopting urban form data in the modeling can 
support researchers, urban planners, and policymakers to have in-depth 
knowledge of the impact of the urban form and devise corresponding 
planning strategies. 

Besides, previous data often have a spatial resolution greater than 1 
km. Inventories with the finer spatial resolution are required for more 
accurate identification of emission hotspots and targeted planning 
strategies. 

Furthermore, the IPCC method and traffic models are mostly used in 
the bottom-up method. Simple linear regression is widely adopted in the 
top-down approach. Panel data model and GTWR have also been 
implemented to account for spatial and temporal heterogeneity. Other 
machine learning algorithms such as random forest and artificial neural 
networks, can explore non-linear relationships with higher precision and 
are anticipated to increase the modeling accuracy in further studies. 

Finally, in the building sector, land use, POI, and household survey 
are frequently used for spatial analysis. For the transportation sector, 
road network, taxi GPS data, vehicle information are the commonly used 
spatial data. Industry locations and point-level energy consumption are 
generally used for mapping industrial emissions. Nevertheless, the in-
dustry locations and energy activities, taxi GPS data, vehicle informa-
tion, and household surveys are generally unavailable for most cities in 
China. The lack of a generally applicable method using open data im-
pedes the consistency of carbon emission estimates and mitigation 
strategies across different cities. Therefore, an open-data based stan-
dardized methodology is essential for collaborative efforts in carbon 
emission assessment and mitigation strategies for global cities. 

5. Conclusions 

In this study, the spatial modeling of urban carbon emissions and the 
impact of urban form in China are systematically reviewed and 
analyzed. The currently available datasets and methods for spatial 
modeling are summarized. The common methods include top-down 
approaches using NTL, bottom-up analyses, carbon satellite observa-
tions, and hybrid methods. 

The strengths and weaknesses of the methods were compared to 
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explore the future needs and trends in the development of spatial 
models. The top-down method based on the NTL can be implemented to 
predict the spatial variations of the regional and national carbon emis-
sions using openly available data sources, but the accuracy of the 
product can be influenced by the data quality of the NTL and the un-
derestimation of the emissions from transport and industrial sector. The 
bottom-up method has generally been conducted locally by government 
authorities or planning departments and has been able to secure accu-
rate carbon emission data. However, the universal application of this 
method is limited by data availability. The carbon satellite method is 
relatively new. It is simple to implement but its application in urban 
areas is still limited due to the coarse spatial resolution. 

The urban forms, including urban morphology and land use, are 
found to affect carbon emissions. In terms of urban morphology, the 
increase in the urban complexity can contribute to higher carbon 
emissions, while there are still some discussions on the impacts of urban 
compaction and the choice of urban spatial development pattern. The 
impact of the proportions of land use types varies in cities under 
different development stages and sizes. Therefore, the impact of the 
urban form should be analyzed for individual cities for a specific and 
targeted understanding. The policymakers and urban planners should 
seriously consider these urban form indicators and develop corre-
sponding urban design policies in a sensible way. 

However, based on the literature, it is found that most studies in 
China do not consider urban form data. This may greatly impact the 
urban carbon emission estimation and management since a complex 
urban morphology and high-density urban context can be found in most 
Chinese cities. Moreover, the spatial inventories of urban carbon emis-
sion in China generally have a low spatial resolution over 1 km. Urban 
carbon emission models with a finer resolution are needed for more 
accurate urban studies at the neighborhood and building scales. With 
newly developed urban morphology extraction technology and machine 
learning techniques, more accurate inventories of urban carbon emis-
sions at higher spatial resolutions can be developed by incorporating 
detailed data on urban form. Open and high-quality urban form data can 

also contribute to the development of a generic method to conduct high- 
resolution urban carbon emission modeling for global cities. 
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