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A B S T R A C T   

While more and more cities are planning towards sustainable development and climate resilience, a thorough 
understanding of the spatiotemporal pattern of building energy demand can be valuable for evidence-based city 
design and climate change mitigation. Energy demand in buildings is heavily influenced by its surrounding built 
and climatic environment. This requires simulation that is sensitive to the heterogeneity of buildings and climatic 
complications in dense urban settings. This paper provides a comprehensive review that documents and cross- 
compares the major methods to simulate building energy use at urban scale. The reviewed literature were ac-
quired by using the search strings “urban-scale, city-scale or large-scale”, “building energy, energy use, electricity 
use, energy consumption or thermal load” and “simulation, forecast, modelling or mapping” in the Web of 
Science database from 2010 to 2021. The result highlighted major differences in strengths, limitations and field 
of application of different methods based on modelling inputs, outputs and approaches to incorporate urban 
environment to the modelling. It also identified that future development of urban-scale building energy use 
should explore more ways to incorporate the spatial variation in weather and morphological conditions, espe-
cially in dense urban settings that experience greater environmental challenges.   

1. Introduction 

Taking up 0.63 % of the Earth’s surface [1], urban areas are, 
responsible for as much as 76 % of the world’s energy demand and 
greenhouse gas emissions [2]. A more detailed analysis reveals that, 
among all urban activities, buildings typically host the most significant 
energy use due to the aggregated energy demand for space cooling, 
heating, lighting and ventilation. In Tokyo, for example, buildings ac-
count for roughly 67 % of the city’s total electricity usage [3], whereas 
the number in Hong Kong reaches as high as 90 % [4]. Without 
appropriate and timely interventions, the demand for energy use is only 
expected to rise under the ever-increasing trend of affluent living stan-
dards and urbanisation. Facing the threat of climate change, cities 
around the world have been planning towards sustainable development 
and climate resilience. As city-level energy transition and planning 
strategies are becoming more common in the late 2010s [5], the pressing 
need for a thorough understanding of the energy dynamic at the city 
level thereby arises, especially for cities with compact urban settings. 

Building energy modelling can be fundamentally grouped into top- 

down or bottom-up approaches [6,7]. The top-down approaches typi-
cally work on the aggregated energy data and pertinent variables like 
macro-economic indicators, income, tax revenues, fuel prices and data 
on climatic trend. As the output tends to be a historical time series en-
ergy use pattern, they are deemed more efficient for revealing the 
temporal fluctuation of energy use [8], understanding the interplay 
between the energy sector and the economy at large [9], and performing 
macro-level retrofit analysis of national building stocks [10]. However, 
they only put limited consideration of variables in individual end-uses 
and rarely describe in detail the performance of building components 
and the built environment [11]. Relying heavily on the historic 
energy-economy interaction, top-down approaches also lack the ability 
to explore technological options for energy conservation where envi-
ronmental and socio-economic conditions have not been previously 
experienced and modelled [9]. The bottom-up approaches, on the other 
hand, use data extracted from individuals or groups of buildings to 
calculate their energy usage, which can then be extrapolated to reflect 
that in the region or nation [12]. In contrast to the top-down models, the 
disaggregated nature of the input data allows the bottom-up approaches 
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to provide a more detailed diagnosis on energy end-use, for example, its 
interplay with socio-demographic relation [13], occupant behaviour 
[14] and physical properties of buildings and their surrounding [15]. 
Powered by the technical advances in simulation and data sharing in the 
past two decades, bottom-up building energy simulation at the urban 
scale is becoming an emerging solution to support evidence-based sus-
tainable city and energy planning. As a useful tool to visualise the energy 
dynamic in areas ranging from city district, city region to inter-cities 
scale, urban-scale simulation can be valuable for power suppliers and 
urban managers to formulate optimal operational strategies with higher 
energy efficiency [8,14–16]. The simulation can also encourage energy 
transition by providing useful information for alternative energy sources 
like geothermal, solar energy and biomass investment and supply 
network. 

Building energy use is a complex, multi-scale and cross-sectoral 
system, which is significantly influenced by its surrounding environ-
ment. Evidence from Hong Kong shows that cooling demands can rise 
nearly 30 % in response to every 1 ◦C increment of hourly outdoor 
temperature [17]. Similar correlation was also reported from the 
city-block scale data in Osaka City, Japan [18]. The impact of certain 
weather elements varies across different climates. For instance, tem-
perature elasticity of the electricity demand in warm climates is up to 
three times higher than that in mild and cold climates [19], while the 
impact of humidity on latent cooling is tested to be more significant in 
subtropical climates [20]. The impact becomes more significant in the 
urban environment where urban morphology complicates the climatic 
conditions. The impact becomes even more prominent in the urban 
environments where compact topography, more anthropogenic heat 
sources and less open spaces are typically found. As a result of these 
phenomena, the urban heat island effect, observed in worldwide cities 
where its air temperature is higher than that in their rural counterparts 
[21], further complicates the energy use in buildings. Each degree of 
urban heat island was found to reduce 22–26 % of space heating and 
increase 18–24 % of space cooling in an Italian case study [22]. In an 
impact analysis by Santamouris, an average global energy penalty of 
0.74 kWh/m2/K as a result of each degree of urban heat island was re-
ported [23]. Given the unique environmental and climatic challenges in 
cities where a wide diversity of buildings is found, there is a pressing 
need to review how energy use in buildings can be simulated in ways 
that are sensitive to the urban environment. 

In response to the increasing need for urban-scale building energy 
modelling, a rising number of reviews were conducted, each focusing on 
different aspects. Reinhart and Cerezo Davila [6] conducted one of the 
first reviews on the data input, thermal modelling and result validation 
of the emerging simulation methods. Ferrari et al. [24] reviewed the 
district-level estimation of building energy use, explicitly those with 
hourly energy profile. Hong et al. [12] provided an extensive review 
covering most aspects of conducting an Urban Building Energy Model-
ling, with an emphasis on its potential applications. Happle et al. [25] 
reviewed the urban building energy models in terms of their modelling 
approaches of occupant behaviour. Fathi et al. [26] presented a sys-
tematic review on urban building energy performance forecasting that 
adapted machine learning techniques. Ferrando et al. [27] provided a 
user-oriented overview of the tools of physics-based urban scale energy 
modelling. Lauzet et al. [28] reviewed the strategies of chaining urban 
microclimate models and urban building energy models. Despite the 
importance of these review efforts in identifying the generic modelling 
approaches and application of urban-scale simulation, an overall review 
from the perspective of how the urban environment is incorporated into 
the simulation is missing. This review, therefore, aims to fill this 
research gap with the following objectives:  

• To document the key methods to simulate building energy use at the 
urban scale based on modelling inputs and outputs  

• To review the approaches to incorporate the urban environment into 
the simulation  

• To cross-compare the strengths, limitations and applications of 
selected methods  

• To explore the emerging needs of model development for high- 
density cities and climate-resilient cities 

This paper is structured as follows. This section introduces the 
background upon which this paper is built, followed by the methodology 
this paper adapted and the scope of articles reviewed. Later sectors of 
the paper present the overview of the review literature, followed by the 
review result of the common approaches in modelling building energy 
use with different input and output, as well as the existing approaches to 
factor in an urban environment in the simulation. Lastly, conclusions 
and future applications are presented. 

2. Methods 

In the process of identifying relevant studies, Web of Science was 
chosen as the search engine as it stores peer-reviewed research literature 
with multi-disciplinary nature, which is essential for building energy 
simulation study as it is related to the branches of structural engineering, 
physics, data science, spatial planning and urban design to name a few. 
Three levels of screening were performed in the quest for credible 
reference. The keywords of “urban-scale” OR “city-scale” OR “large- 
scale” were used in the search to filter studies at the desired magnitude. 
The “building energy” OR “energy use” OR “electricity use” OR “energy 
consumption” OR “thermal load” were then incorporated. For the nature 
of studies, keywords of “simulation” OR “forecast” OR “modelling” OR 
“mapping” were used. The exact context and wording of sources may be 
diverse as some may not specifically mention any key terms yet present 
similar concepts. The range of publication years of literature was defined 
as 2010 to 2021. 

In the process of identification, 76 articles were acquired. The arti-
cles were then screened manually by checking the titles, abstract and 
keywords. Sources that can facilitate the achievement of the research 
objectives was scrutinised in detail, whereas special attention was put on 
simulations with application in the urban environment. Records that 
were deemed irrelevant for this piece of research, such as top-down 
simulation were removed after an extra step was taken by scanning 
for information that is useful for understanding the interplay between 
energy use and urban environment. The overarching notion hereby lies 
in their applicability and reference for conducting climate and place- 
sensitive simulation. Finally, after the relevant literature was identi-
fied, the necessary information was extracted, processed and synthe-
sized in the analysis step. 

3. Results 

3.1. Overview of the literature 

After reviewing all the collected literature, an increasing trend of the 
number of papers by year was observed (Supplementary Material Fig. 1), 
indicating the urban-scale modelling is of increasing relevance and 
importance. In terms of the categorical breakdown, most papers were 
conducted in the field of Energy Fuels, Construction Building Technol-
ogy and Engineering Civil (Supplementary Material Fig. 2). While a few 
studies were conducted in the field of Environmental Studies and 
Environment Sciences, this finding corresponds to the need to investi-
gate the topic from the perspective of urban environment and planning. 

To obtain a more solid grounding for the succeeding review, 
keyword co-occurrence analysis can help to identify the key focus do-
mains and common research topics [29]. Keywords that appeared more 
than three times in the retrieved documents were identified and ana-
lysed by VOSviewer [30]. The output of the co-occurrence analysis is 
presented in Fig. 1. The node size represents the frequency of terms that 
appeared in all literature, while the line thickness reflects the strength of 
connections between the terms. The terms ‘building’, ‘energy demand’, 
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‘building energy model’ and ‘city-scale’ have the highest occurrences as 
the search strings of this review paper. Other frequently occurred terms 
include ‘approach’ and ‘methodology’. It can be interpreted that a 
substantial amount of studies focused on model development and 
simulation approaches, which are applied and tested in real-world case 
studies. Four clusters of keywords were also identified: building end-use 
modelling (yellow), city-scale energy demand (blue), modelling ap-
proaches (green) and energy performance analysis (red). Understanding 
the components of each cluster can help direct the research focus in the 
next session. For instance, the presence of ‘climate change’ and ‘physics’ 
in the same cluster indicates that their linkage should be further 

explored, similar indication applied for ‘physics’ and ‘climate change’, 
as well as ‘building stock’ and ‘representative building’. 

While the model development and simulation approach were found 
to receive most research attention, the understanding of methods based 
on modelling inputs and outputs can aid future research on under-
standing the building energy dynamics in cities. 

3.2. Approaches based on modelling inputs 

Based on the data inputs, modelling approach of modelling building 
energy can be fundamentally divided into three main categories: (1) 

Fig. 1. Keyword co-occurrence analysis of the reviewed articles.  

Fig. 2. Classification of urban-scale building energy models.  
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physics-based models, which calculate explicitly the energy consump-
tion in buildings using geometric data, (2) data-driven models, which 
employ data mining or machine learning techniques to display energy 
behaviours, and (3) hybrid models, which combine elements from both 
physics-based and data-driven models (Fig. 2). 

3.2.1. Physics-based models 
Physics-based models, also known as engineering-based models or 

analytical models, deduce energy by using heat and mass flow equations 
[7,8]. By calculating the thermodynamics within a building and its 
surrounding environment, the simulation can offer a thorough diagnosis 
of the building’s performance and its thermal loads, which can indicate 
the energy demand for temperature regulation and prediction on pro-
spective usage [31]. The most conventional method is performing a 
multi-zone model, which employs complex physics equations to deduce 
the thermal dynamic of each building unit and then added up to 
compute the thermal loads of the whole building. Since traditional 
methods require a substantial amount of technical data of each building 
unit, which must be assembled and managed with considerable 
computation volume and research time, it is less frequently used in 
urban-scale simulation. To reduce computation volume and time for a 
larger scale simulation, redeveloped physics-based model is typically 
applied for simulation using simplified input of, for example, thermal 
data [32], boundary conditions [33] and building shapes [34]. For 
instance, Dogan and Reinhart [35] introduced a novel approach named 
Shoeboxer model to reduce the computational volume and complexity. 
By abstracting and clustering building volumes into a group of ‘shoebox’ 
models for thermal simulation, the Shoeboxer model can address the 
thermal variation in different parts of the building, i.e. core-area and 
perimeter-area, while being nearly 300 times than the traditional 
multi-zone model. Similarly, Zheng et al. [36] proposed a parallel 
computation building-chain model, in which city model are broke down 
into building units that are linked by thermal conditions. 

Due to its technological nature, physics-based models present certain 
competence and limitations. The physics-based model has the advantage 
to inform evidence-based approaches for building retrofit measures for 
building benchmarking. The models can also evaluate the effectiveness 
of different energy conservation measures on building construction and 
operation [9]. However, one of the issues identified is the limited ca-
pacity in handling data that cannot be physically measurable, for 
example, socio-economic variables and individual user information 
[36–38]. As the physics-based models are calibrated by variation of the 
infiltration rate and heat transfer, this implies that its model output is 
based on heating load prediction, as opposed to heating energy use 
which is heavily influenced by occupant behaviour and other 
socio-economic variables. 

3.2.2. Data-driven models 
Data-driven models is a relatively new approach for two reasons: 

increasing data availability and technological advances. Traditionally, 
sensors that obtain building energy data came with low accuracy [39], 
metered data was rarely collected and analysed in detail. The release of 
more smart home applications and intelligent metering devices in recent 
years has fuelled the digitalisation of energy systems, allowing energy 
data to become more fully and extensively available [40]. For instance, 
an innovative study, which was conducted at the scale of 900 buildings 
in San Antonio, Texas, utilised mobile positioning data, available 
through location-based service applications, to harvest occupant profiles 
and urban-scale energy demand [41]. 

Data-driven models can be broadly grouped into regression-based 
methods, probability-based methods and clustering-based methods 
(Table 1), each with their distinctive functions to serve specific research 
interests. 

Regression-based methods, which are found to be the most common 
in the literature reviewed, are usually applied to predict energy use. As 
prediction can be made on building energy demand based on historic 

usage and scenario analysis of, for example, variances in climatic con-
dition [3] and projected demographic changes [52], it can be useful for 
establishing a long-term strategy for sustainability and combating 
climate change. An emerging sub-field of regression-based methods is 
machine learning methods, such as support vector machine [43,44], 
decision trees [33], random forest [44,46] and artificial neural networks 
[17,43]. Possessing the ability to learn from data using computer algo-
rithms, machine learning models are beneficial for handling a substan-
tial amount of data and applying to large-scale study such as urban-scale 
modelling [53]. A comparative study among three algorithms, namely 
linear regression, random forest and support vector machine, was per-
formed by Kontokosta and Tull [44] with the case of 1.1 million build-
ings in New York City. It is shown the difference between their mean 
absolute errors is insignificant, yet their performance showed slight 
variations when simulating at different spatial scales. Support vector 
machine provided the most accurate result for predicting energy use 
based on official energy data, whereas linear regression was the most 
accurate for the entire city. 

In the case of incomplete and uncertain information, probability- 
based methods can be applied to deduce energy demand based on 
prior empirical data and naturally accounts for uncertainties, deriving 
the missing information at scales ranging from residential neighbour-
hood to city. For instance, Hedegaard et al. [48] used Bayesian regres-
sion to calibrate heating and water usage profiles of 159 houses in a 
neighbourhood of Aarhus, Denmark. Choudhary [47] used Bayesian 
regression to estimate the energy use intensity of non-domestic building 
stock of Greater London based on energy data from established reports, 
energy audits and benchmarking values. 

With its ability to identify the hidden structures of a large dataset, 
clustering-based methods can characterise the spatiotemporal pattern of 
energy use [54], as well as the grouping of data into selected parameters 
[11,55]. Xu et al. [50] produced general monthly energy use curves of 
six Chinese cities in Jiangsu Province by clustering the smart meter data 
of 86,672 households into 16 clusters based on, firstly, their monthly 
average electricity use level and, secondly, use pattern. The result of the 
two-step clustering was then fit into 14 electricity use pattern parame-
ters using probability distributions to generate the electricity use curves 
of the entire province. However, as the training process of 
clustering-based methods requires the input of complete datasets, the 
clustering-based method is rarely used to simulate urban-scale building 
energy due to the problem of energy data scarcity or incomplete data. As 
an example, Tardioli et al. [46] augmented the clustering result for 
city-scale predictive modelling by identifying 65 representative build-
ings from a dataset of 8785 buildings by using K-means clustering, hi-
erarchical clustering and clustering medoids. The clustering result was 
then extended to predict the energy use of 4829 additional buildings by 
using the random forest algorithm with an average accuracy of 89.6 %. 

Table 1 
Reviewed studies with data-driven elements.  

Data-driven elements Reference 

Regression-based 
methods 

Regression 
algorithms 

Linear regression [42–45] 
Multiple linear 
regression 

[45] 

Machine learning 
method 

Support vector 
machines 

[43,44] 

Decision trees [33] 
Random Forest [44,46] 
Artificial neural 
networks 

[17,43] 

Probability-based 
methods 

Bayesian regression [47–49] 
Probability Distribution [50] 

Clustering-based 
methods 

K-means clustering [11,32,46,50, 
51] 

hierarchical clustering [46] 
clustering medoids [46]  
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3.2.3. Hybrid models 
In regards to the limitation of physics-based and data-driven models, 

an increasing amount of study has married the two models to leverage 
their advantages, generating more comprehensive simulation results for 
different purposes. For instance, in the multi-scale framework developed 
by Nouvel et al. [56], the statistical method can be calibrated with an 
engineering method as correction factors in the case of missing or un-
certain building physics information, while the engineering method can 
provide a statistical model with refurbishment-related information for 
large scale renovation and sustainable policies. Fonseca and Schlueter 
[11] joined the output of statistical and analytical calculations of energy 
use of 1392 buildings in a Swiss city in order to reduce the uncertainty of 
results derived from simplified physics-based models. Their integrated 
model was able to a generate simulated outcome of higher reliability 
result with 1 % and 19 % errors at neighbourhood and city districts scale 
respectively. 

Different components from the two models can be combined differ-
ently. Cheung et al. [9] firstly calculated the envelope heat gains of 
typical public housing block types in Hong Kong, then used the output to 
train the artificial neural network to simulate the cooling energy use of 
all public housing in Hong Kong. Roth et al. [42] stimulated the energy 
demand in 1 million buildings using statistical methods and optimised 
the simulation result with physics-based on individual buildings in tar-
geted areas. Girardin et al. [16] performed a statistical analysis of 
measured consumption data in Geneva, Switzerland and used the result 
to predict future demand on heating and cooling loads using a heat 
exchange model for buildings. 

3.3. Approaches to present modelling output 

Despite its nature of data input, the modelling results can be dis-
played statistically or spatially. In studies that adopted statistical pre-
sentation, energy data collected in individual buildings can easily be 
extrapolated to different temporal scales. For instance, Nutkiewicz, 
Zheng and Rishee [31] displayed the energy use of 22 buildings in an 
urban university campus in California, USA at daily, monthly and yearly 
scale; Ren, Paevere and McNamara [39] presented the predicted energy 
usage of 5000 Census Collection Districts in New South Wales, Australia 
with hourly, daily and yearly resolution. In other words, statistical 
presentation is beneficial when the temporal course of energy use is of 
interest. Energy graphs can also demonstrate the correlations between 
energy use and different variables, which help to identify the influencing 
factors of energy use. For example, Fracastoro & Serraino [38] visualised 
the investment potential in retrofit technologies with energy-saving 
curves simulated with data on geometry, construction, meteorology 
and internal conditions. However, the statistical presentation cannot 
show the spatial distribution of energy use in urban areas. Hence it is less 
useful in informing urban planning policy. 

Spatial presentation refers to the use of geospatial techniques to 
present energy use at large scale. By displaying the spatial distribution of 
building energy use, the spatial presentation helps to identify the pain 
point or key action areas for energy planning and conservation. Spatial 
presentation can aid the understanding and facilitate urban decision 
making by non-specialists in view of the complexity of energy systems 
[46,54]. An additional strength of spatial presentation is the ability to 
capture spatial variations in climatic conditions. For example, in the 
study by Rosser et al. [34], 3D city model that represent urban scenes 
was used to assess and present the building energy use that was sensitive 
to the inter-building effect; Vázquez-Canteli and Kämpf simulated the 
building energy use of the Junction District in Geneva, Switzerland 
using physics-based models and created a geometrical 3D model to 
analyse and present the building energy use in different climate change 
scenarios [57]. 

3.3.1. Overview of urban environment 
In urban areas where constant development and redevelopment 

projects take place, it is common to find a wide diversity of buildings 
with varying types, ages and forms. In order to address the heterogeneity 
of buildings in an urban environment, understanding the common pa-
rameters can facilitate more accurate estimation of building energy use. 
Building height and area indicate the intensity of its energy use. For 
building age, different construction periods signify the shift in building 
traditions and energy requirements, which are usually defined in local 
energy standards and law [38]. Land use is also a typical parameter to 
estimate the level and pattern of energy consumption. For instance, the 
energy used for lighting in business city blocks was found to be insen-
sitive to solar radiation, different from residential and mixed city blocks 
[18]. The ability to identify and analyse the various characteristics of 
buildings in an urban environment is the key to accurate simulation. 

To fully understand a building’s energy performance, it is important 
to consider not only the buildings own technical properties but also its 
surrounding built environment and impact from climatic conditions. For 
instance, the abundance of high-rise buildings would alter [58] or 
weaken [59,60] wind flow, which eventually would exuberate the heat 
gain in some buildings through infiltration and deteriorate the indoor 
thermal comfort [61]. Potential wind dynamics in urban areas can also 
be reflected by calculating urban morphology data such as sky view 
factors and surface roughness length [62]. The presence of adjacent 
buildings would impact the solar gain of buildings and energy use for 
their lighting [63]. Neglecting the inter-building effect, as reported by 
Pisello et al. [64], could result in an error in energy simulation of as high 
as 71.9 %. While calculating these impact by individual building may 
require significant amount of urban fabric data and calculation effort, 
generic data such as area density and mean height of buildings can be 
the alternatives to estimate the impact of surrounding geography on 
building energy use [65]. 

3.3.2. Addressing the variety of buildings 

3.3.2.1. Use of Geographical Information System. With its wide-ranging 
functions of storing, managing, analysing and presenting data, 
Geographical Information System (GIS) is found to be commonly used to 
incorporate the urban environment in modelling city-scale building 
energy. As the simulation of urban-scale building energy requires a 
substantial amount of data input, the use of GIS allows data of wide 
diversity to be easily integrated and possessed using spatial reference 
code. Despite using physical data or metered energy data, it is essential 
to obtain building geometric data such as building height, building 
footprints and the number of floors to estimate the intensity of building 
energy use in urban areas. Such physical settings of the urban environ-
ment can be represented and quantified in GIS, which can incorporate 
more features in the urban environment at the later stages. In some 
cities, detailed building footprints and other geometric data are stored in 
the form of polygon type shapefiles in the government database, for 
example, Land Use Tax Lot Output in New York City [32,43,44], Boston 
GIS in Boston [37], Basic Registration of Addresses and Buildings in 
Dutch cities like Leiden [66]. 

In addition to the function of combining different types of data, GIS 
also supports data pre-processing to facilitate modelling at a later stage. 
One of the examples would be how Cerezo Davila et al. [37] applied 
polygon simplification techniques in GIS ArcMap to reduce the number 
of points of footprint polygons, in order to shorten the simulation time 
due to the complex shapes of buildings extracted from satellite and 
flyover imagery. Some studies even went a step further to use GIS for 
data generation. In the case of missing or faulty data, which was 
demonstrated by Yang et al. [66]. 

3.3.2.2. Building segmentation. Collecting details about the envelope 
and energy system of individual buildings at the urban scale can be time- 
consuming, not to mention the possibility of unavailable or inaccessible 
measurements. One of the most common solutions targeting the 

C.H.H. Wong et al.                                                                                                                                                                                                                             



Building and Environment 205 (2021) 108235

6

heterogeneity of buildings is the use of archetype models, which are the 
building typologies that contain similar values for key input parameters 
to deduce energy use. By collecting simple background data on buildings 
without detailed geometric or metered data, each building can be 
assigned an archetype and its predictive energy use. The data would 
then be scaled up and multiplied by the number of buildings represented 
by them, allowing calibrating to represent multi-level energy perfor-
mance. For instance, Fracastoro & Serraino [38] segmented over 870, 
000 buildings in the Italian provinces of Piedmont & Lombardy into 
3168 archetypes. After deducing the thermal load of each archetype 
with data on geometry, transmission and ventilation, the trained data 
was then calibrated and aggregated to show multi-level analysis energy 
performance. The segmentation of building is typically achieved by 
using data-driven techniques, most commonly clustering-based methods 
to conduct statistical zoning, which facilitates the characterisation of 
buildings with their respective prototype. 

In this review, the most common features used for building seg-
mentation are identified to be Construction Period, Building Structure 
(height and size) and Building Use/Type (Table 2). This finding agrees 
with the report by Kontonkosta and Tull [44] that the top six features: 
Year Built, Number of Floors, Proportion Residential, Proportion Office, 
Proportion Retail, and Borough. They were reported as the most predictive 
of electricity use and could significantly improve the accuracy of the 
building-level simulation. 

Despite the benefit of simplifying the computation process, catego-
rising buildings into archetypes can mispresent the diversity of occupant 
behaviour, envelop individuality and differences in the HVAC system, 
which can result in 15 % error in simulation according to a validation 
study [37]. To minimise the potential loss of information in simulation 
using building archetypes, the calibration requires a sufficient under-
standing of the local energy laws and requirements, before identifying 
appropriate parameters to characterise buildings are identified. When 
the method is implemented in cities with a rich diversity of buildings 
and complex urban forms, a wide and sufficient range of building pro-
totypes should be developed in response to the morphological contexts. 

Urban morphological factors can be incorporated as indicative pa-
rameters for building segmentation, which was demonstrated in a 
number of simulations: Yamaguchi et al. [55] selected zoning/configu-
ration patterns as one of the parameters for clustering as it will “affect 
the thermodynamic characteristics of buildings”; Caputo et al. [39] 
defined building archetypes with different form factors to represent 
buildings in urban areas of low, medium to high, and high density; One 
of the keys for accurate large-scale simulation is the ability to incorpo-
rate a greater number of factors that influence power consumption [68]. 

In reality, however, urban morphology factors are observed to be less 
prioritised in the feature selections. One plausible explanation is that 
most studies are constrained by the computational capacity and can only 
use the strongest predictors of energy demand for segmentation. Whilst 
more and more data mining techniques have been investigated to inte-
grate more predictors with reduced computation time, the rising 
accessibility and applicability of big data technology are expected to 
further increase research capability in better incorporating urban form 
in large-scale simulation. For instance, Ma and Cheng [43] identified the 
vegetation cover of New York City using satellite imagery, then calcu-
lated the Normalised Difference Vegetation Index, and used it as one of 
the 216 features to predict city-wide energy use. 

3.3.3. Incorporating urban climate 
The data input of building envelopes and the climate effect on them 

are also essential to simulate the thermal load in buildings. Typical ge-
ometry features that are related to urban climate data include building 
footprint (height, floor space), glazing ratio and thermal transmittance 
(U-value) of window, wall and roof et cetera. For example, glazing ratio 
affects the amount of interaction between indoor and outdoor envi-
ronment, whereas vertical-to-horizonal building area ratios as it de-
termines building surface area exposed to the outside environment. 

Upon the input of geometric data, weather data is required to set the 
boundary conditions in order to deduce the thermal balance between the 
building and its surrounding. This review found that almost all simu-
lations considered the factor of temperature as outdoor temperature 
significant affects building thermal load in means of convective and 
conductive heat transfer [69]. Most studies adopted the degree-day 
method, which is built upon the assumption that space heating energy 
demands for buildings are directly proportional to their heat loss in 
response to urban atmospheric conditions. For example, heating 
degree-day refers to the sum of departures of mean daily air temperature 
from the base temperature, which is defined and computed differently in 
varying contexts and regions [70]. Other weather parameters included 
radiation, humidity and wind profile (Table 3). In terms of air humidity, 
as solar heat is absorbed by water bodies, air with a greater amount of 
water vapour would result in higher latent and sensible heat and hence 
impacting the thermal energy demand. 

In our review, most urban-scale simulations adopting thermal 
modelling used city-wide weather data, and the most common source is 
airport weather stations (Table 3). It means that most simulations are 
built upon the assumption that the climate in an urban environment is 
homogenous. For instance, Kristensen et al. [49] obtained the hourly 
temperature data from a central weather station and assumed that it was 

Table 2 
Parameters of building archetypes in selected studies.  

Paper City Number of 
buildings 

Number of 
Archetype 

Geometrical parameters Non-geometrical parameters 

Density Structure 
(size/height) 

Construction 
period 

Building 
use/type 

Occupancy Fuel source/ 
Energy efficiency 

[3] Milan, Italy  56  4 (form factor) 7 2   
[11] Zug, Switzerland 1392 172   6 + 6 renovation 

periods 
16   

[34] Nottingham, UK 50 30  5 (built form) 6    
[37] Boston, US 83541 52   4 13   
[46] Geneva, 

Switzerland 
13614   9 10 3   

[51] Beirut, Lebanon 3630 30   6 5   
[55] Osaka, Japan  612 9 (zoning 

patterns) 
5  4  4 

[66] Leiden, 
Netherlands 

14321 30   6 5   

[38] Piedmont & 
Lombardy, Italy 

877,124 3168 3 (building 
contiguity) 

4 4  7 11 

[67] Ile-des Soeurs, 
Canada 

Around 1500   17 (window- 
wall ratio) 

10    

[48] Aarhus, Denmark 18475 11   11     
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‘adequately representative’ of the weather condition of the study area. 
Fracastoro and Serraino [38] assumed the solar irradiance values 
recorded in the regional capital could represent the solar irradiance of 
the whole region, albeit with their geographical difference. One of the 
possible reasons for the effect of microclimate often disregarded is that 
most of the reviewed simulations were conducted in low-density cities 
(Table 3), where the effect of urban form on weather conditions is 
limited. As a result, the effect of microclimate is often seen to be dis-
regarded in the simulation. Having that said, a few simulations have 
considered the zonal variation in climatic conditions, which can be 
categorised into two major approaches: simulating weather data at a 
finer scale and manipulating morphological data. 

3.3.3.1. Simulating weather data at finer scale. Incorporating of simu-
lated weather data at a finer scale can help increase building energy use 
modelling in the urban environment where spatial variations of weather 
conditions are significant. The more direct approach is by coupling the 
microclimate model with the energy model. For instance, Katal et al. 
[60] integrated City Building Energy Modelling (CityBEM) with City 
Fast Fluid Dynamics Model (CityFFD) to derive the total energy demand 
that is sensible to the microclimate. CityFFD is a 3D fast fluid dynamics 
solver that predicts local microclimate using numerical modelling 
techniques, and CityBEM calculates the heat transfer and infiltration 
using the indoor, outdoor and building surface temperatures. More 
specifically, microclimate data are exchanged between the two models. 
The average wind speed, directions and temperatures around each sur-
face of buildings were calculated in CityFFD and input for CityBEM to 
derive the indoor thermal condition, which was then applied as the 
input boundary conditions for CityFFD to deduce the energy use. The use 
of pseudo weather measurements resulted in a significant difference in 
building surface temperature at 2.5 ◦C [60], allowing a more accurate 
estimation of the energy performance. However, running a microclimate 
model requires a substantial amount of technical environmental and 
geometric data. Therefore, even more substantial computation volume 

and research time are needed when it is coupled with the energy model 
therefore requires a considerable computation volume and research 
time. 

Kohler et al. demonstrated the use of another model by using the case 
study of Strasbourg, France [71]. The authors firstly obtained the 
city-scale base temperature from the non-hydrostatic regional Weather 
and Research Forecasting (WRF) model, then generated the vertical 
hourly temperature profile of building by calculating radiative in-
teractions and turbulent exchanges between buildings and the urban 
atmosphere in the WRF model. Lastly, hourly building energy signature 
at floor scale was computed and aggregated for different urban forms. 
Since the use of degree-day method and WRF/urban climate modelling 
system require only simplified cubic building geometry [71], it is 
beneficial to predict energy use without detailed housing stock infor-
mation or long-term historical energy data. A similar approach is 
adopted in the model developed by Ortiz et al. [72] for New York City, in 
which urban morphology parameters such as average building height, 
major land use and area fraction were defined at a spatial resolution of 1 
km × 1 km in order to match with those in the urbanised WRF model. 

3.3.3.2. Manipulating morphological data. While the urban morpholog-
ical effect on climate is proven to significantly influence the accuracy of 
simulation [73], some studies deduced the spatial variation in weather 
conditions by manipulating urban morphological data. For instance, 
based on the assumption that buildings in areas with similar urban 
parameter values share a similar microclimate, Quan et al. [36] defined 
50 microclimate zones in Manhattan using four parameters of urban 
morphology, i.e. canyon height, canyon ratio, pervious road fraction and 
building roof fraction and calculated their associations with the urban 
heat island effect based on data from the central weather stations. The 
refined dry-bulb temperature was then used to simulate thermal loads in 
buildings for the whole region. Morphological information can be 
generated in the GIS as well. For instance, Ma and Cheng [43] utilised 
GIS to calculate the distance of the buildings to the coast in relation to 

Table 3 
Meteorological factors considered in selected studies.  

Ref City Weather Parameters Spatial Scale Temporal 
Scale 

Source TMY 

Temperature Humidity Solar 
radiation 

Wind State City Block Building Hourly Airport 
Weather 
Station 

Openweather City 
weather 
station 

[11] Zug, 
Switzerland 

✓ ✓ ✓         ✓  

[17] Hong Kong, 
China 

✓ ✓    ✓       ✓ 

[33] San 
Francisco, 
USA 

Not specified  ✓   ✓     

[37] Boston, USA Not specified  ✓    ✓   ✓ 
[42] New York 

City, USA 
Not specified  ✓   ✓  ✓  ✓ 

[48] Aarhus, 
Denmark 

✓  ✓   ✓   ✓     

[51] Breuit, 
Lebanon 

Not specified  ✓    ✓    

[65] Leiden, 
Netherlands 

✓  ✓   ✓   ✓   ✓  

[38] Piedmont & 
Lombardy, 
Italy 

✓  ✓           

[66] Ile-des 
Soeurs, 
Canada 

✓  ✓ ✓  ✓  ✓ ✓ ✓    

[62] Strasbourg, 
France 

✓  ✓ ✓    ✓ ✓ ✓  ✓   

[63] Ostfildern, 
Germany 

✓  ✓   ✓       ✓  
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natural cooling, the density value of population and traffic, and the 
Normalised Difference Vegetation Index. These features were then used 
with 213 other features as predictors to model city-wide building energy 
use by using machine learning algorithms. 

Inter-building effects can also be captured from urban morphology 
data. As spatially proximal structures may influence the heat gain and 
radiation of buildings [74], data such as distance between buildings and 
vertical-to-horizontal area ratios can be used to derive the shading ef-
fect. For instance, in the simulation by Krayem et al. [51] where “each 
building (of height H) that is 3.78H away from the target building is 
considered as a building that casts a shadow”, shading effects were 
hence factored in when deriving the heat-balance of buildings in Beirut, 
Lebanon. Similarly, the shading sub-engine in the simulation by Quan 
et al. [36] was built upon GIS data on building height, tree canopy and 
topographical data. Although the sub-engine method assumes an iden-
tical window-to-wall ratio of each façade, it can reduce a net mean bias 
error of 2 % by capturing the interaction with solar radiation using only 
geometric data and GIS system [34]. 

4. Discussion 

In the preceding section, major methods to simulate building energy 
use at an urban scale were listed and analysed based on the modelling 
inputs, outputs and approaches to incorporate the urban environment. 
Table 4 and Table 5 summarised their respective strengths and limita-
tions, as well as their potential applications. 

Simulation of building energy use can be based on physical data or 
metered energy data. Models based on different data input present their 
respective competencies, thereby allowing distinctive fields of applica-
tion. As physics-based models require a large amount of technical data 
and intensive computation volume, it is mainly applied in studies for 
more technical purposes, such as informing energy planning, opera-
tional optimisation and large-scale building retrofit measures. While 
physical scenarios and energy systems of buildings can be simulated in 
physics-based models, they also support energy use forecasting upon 
scenario settings, which is informative for decision-making in urban 
planning and development. Another common application of physics- 
based models is thermal comfort analysis, which facilitates air temper-
ature and quality control in the urban environment. 

In comparison, data-driven models rely on historical energy usage 
data, thereby are commonly used to estimate building energy use when 
limited physical information on the building can be gathered. Data- 

driven models can reveal the effects of individual covariates [44], 
such as climatic conditions, states of building and occupants’ behav-
iours. With the substantial amount of metered data that can be easily 
extrapolated, data-driven models have the strength to derive different 
temporal courses of energy use. The data-driven models also support 
simulation at a larger scale when the energy data at respective scales are 
available, whereas physics-based models are limited to neighbourhood 
or district scale as substantial computational volume is required. 

However, these two methods display respective incompetence when 
the simulation is conducted at a large scale, especially in terms of data 
collection and processing. As data-driven models require the actual 
consumption in buildings, its application could be hindered by the data 
availability of city-wide metered data. Although some cities have made 
it legally binding to reveal energy data of building, like the energy 
disclosure ordinance in New York City (LL84), in cities without the data 
available, researchers may have to obtain them through special 
arrangement with utility providers [47] or with government de-
partments [44]. This results in an emerging trend of using hybrid 
models, in which elements of simplified physics-based models and 
data-driven models are combined, to produce more accurate simulation 
results. Although more robust modelling designs are needed [9,16,42], 
hybrid models can leverage the strengths of two models. Hence, it is 
becoming more widely applied in urban scale studies. 

Similarly, the choice of modelling output presentation is determined 
by research interests as statistical presentation and spatial presentation 
serve different purposes. When the temporal course of building energy 
use is of interest, statistical presentation is typically used as data can be 
easily extrapolated. However, the modelling outcomes can be highly 
technical and thereby are mainly used to support energy planning and 
optimisation decision-making. Spatial presentation, on the other hand, 
can be easily comprehended as it displays the spatial distribution of 
energy use. It is particularly useful for informing urban planning and 
design where cross-sectoral decision-making is involved. 

Several approaches to incorporate the urban environment were 
summarised in this review. With wide-ranging functions such as data 
integration, pre-processing and generation, GIS is commonly used to 
support urban-scale modelling. Energy data of each building can be 
directly input into the GIS and combined with geometric information, 
allowing physical settings of urban environment to be represented and 
quantified. Using building archetypes to predict large-scale energy use is 
another widely applied approach identified. Instead of requiring 
detailed geometric or metered data of each building, building 

Table 4 
Cross-comparison of different approaches based on modelling input and output.  

Classification 
based on 

Approaches Strengths Limitations Applications 

Input Physics-based 
models  

• Capable of capturing the actual 
thermodynamic of buildings  

• Can be simulated without historical data 
[35,36]  

• Detailed physical and technical data 
required  

• Intensive computational volume and 
time required  

• Energy planning and operational 
optimisation  

• Energy use upon scenario settings  
• Thermal comfort analysis  
• Mainly applied to simulation at the 

neighbourhood or district scale 
Data-driven 
models  

• Capable of revealing the effect of 
individual covariates  

• Capable to reveal the temporal courses of 
energy use  

• Large number of sampling energy 
data required [41]  

• Limited capacity to characterise 
energy services  

• Coarse temporal and spatial scale  

• Energy use forecast when limited building 
data is provided  

• Can be applied to simulation at the 
neighbourhood, district or city scale 

Hybrid models  • Leverage the advantages of physics-based 
and data-driven models [11,56]  

• Robust modelling designs required 
[9,16,42]  

• Useful for simulation at the 
neighbourhood, district or city scale 

Output Statistical 
presentation  

• Energy data can be extrapolated to 
different temporal scales [31,39]  

• Display the correlation between energy 
use and different variables  

• Less capable to the display the spatial 
variations in energy use  

• To display energy usage pattern when its 
time course is of interest  

• To support energy planning and 
conservation policies [38] 

Spatial 
presentation  

• Display the spatial distribution of energy 
use [34,57]  

• Easily understood [46,54]  

• Less capable to the display the 
temporal variations in energy use  

• To display energy usage pattern when its 
spatial distribution is of interest  

• To inform evidence-based urban planning 
and design  
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segmentation help estimate large-scale building energy use based on 
assigned parameters, making it especially suitable for high-density city 
modelling with a wide variety of buildings. Once the archetypes are 
established upon a detailed understanding of energy features and re-
quirements, they can also be applied to predict energy use in large areas, 
i.e. city-scale or even inter-cities or national scale modelling. 

As for the climate environment, it is identified that most studies 
incorporated city-wide weather conditions in energy use modelling. 
However, in urban areas where weather conditions are significantly 
impacted by the complex urban settings, extra effort is needed to 
incorporate their spatial variation, which can be achieved by simulating 
weather data at a finer scale and manipulating morphological data. 
However, coupling microclimate and building energy model at urban 
scale may face computational difficulties due to a substantial amount of 
data required, making it more applicable for simulation at neighbour-
hood and district scale. Manipulating morphological data, as a rising 
alternative to reflect localised weather conditions, is becoming an 
emerging solution under the trend of advancing data mining and 
geographical information technology. Comparatively, this approach is 
simpler to compute and conduct. Therefore, it can be applied to simu-
lation at a more wide-ranging scale. It can also incorporate the real- 
world urban settings and their effects into the simulation. Therefore, 
is applicable for modelling in cities and areas without available micro-
climatic data. 

5. Conclusion and applications 

Understanding the landscape of energy use in a city is the first step 
towards energy transition, climate resilience and other sustainable 
goals. This review collected and analysed the major methods to simulate 
building energy use at the urban scale a based on the modelling inputs, 
outputs and approaches to incorporate the urban environment. The 
strengths and limitations of the methods were compared to explore the 
possible applications and future needs in the model development. While 
physics-based models and data-driven models are suitable for different 
scales of simulation and research objectives, the availability of data 
typically is determines the choice between them. In response to their 
incompetence, hybrid models, in which elements of simplified physic- 
based models and data-driven models are combined, are becoming an 
emerging solution. With the advance of machine learning and big data 
technology, more robust simulation designs and model development are 
expected to leverage the advantages of physics-based and data-driven 
models. 

Given that buildings energy use is sensitive to not only building in-
ternal conditions but also its surrounding built and climatic environ-
ment, the key to produce a more accurate simulation depends on its 
ability to capture the impacts of various contextual factors. While GIS is 
capable and commonly used to represent and quantify the urban phys-
ical environment, building segmentation is a significantly useful in 
modelling the building energy use of cities with a wide diversity of 

buildings. However, this review identified that insufficient consider-
ation had been put on the effect of zonal variation in weather conditions 
within the cities and their influences on thermal loads in buildings. This 
can be reasoned by the observation that most modelling studies were 
conducted in low-density cities, where the effect of urban forms on 
weather conditions is limited. While compacted cities such as Asian 
megacities experience greater vulnerability to climate change [75] and 
more extreme weather conditions [76] due to their climatic profile and 
dense morphology, this review highlights the need to put more attention 
on the urban heating island effect and other climatic complications in 
high-density urban settings. Another possible challenge that hinders the 
account of spatial variation in weather conditions is the intensive 
computation effort and data it requires. In response, an emerging 
research trend of using urban morphological data to reflect the micro-
climates is observed. In the future, urban and energy data will become 
more accessible, and, by consequence, more creative use of urban 
morphological data is expected to better incorporate the urban climatic 
environment. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This research is supported by a Seed Funding for Strategic Interdis-
ciplinary Research Scheme (Project no.: 102009942) from the Univer-
sity of Hong Kong. The authors appreciate reviewers for their insightful 
comments and constructive suggestions on our research work. The au-
thors also want to thank editors for their patient and meticulous work on 
our manuscript. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.buildenv.2021.108235. 

References 

[1] X. Liu, G. Hu, Y. Chen, X. Li, X. Xu, S. Li, F. Pei, S. Wang, High-resolution multi- 
temporal mapping of global urban land using Landsat images based on the Google 
Earth Engine Platform, Rem. Sens. Environ. 209 (2018) 227–239. 

[2] K. Seto, et al., Human settlements, infrastructure and spatial planning, in: 
O. Edenhofer, et al. (Eds.), Climate Change 2014: Mitigation of Climate Change, 
Contribution of Working Group III to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change, IPCC, Geneva), 2014, pp. 923–1000. 

[3] C. Spandagos, T.L. Ng, Equivalent full-load hours for assessing climate change 
impact on building cooling and heating energy consumption in large Asian cities, 
Appl. Energy 189 (2017) 352–368. 

[4] Electrical and Mechanical Services Department, Hong Kong Energy End-Use Data 
(2017), Electrical and Mechanical Services Department, Hong Kong, 2019. 

Table 5 
Cross-comparison of different approaches to incorporate the urban environment.  

Approaches Strengths Limitations Applications 

Use of GIS  • Facilitate integration of building and energy data [  
• Support data pre-processing and generation [37,66]  

• Subjected to the availability of the 
GIS database  

• Can be applied to simulation at the 
neighbourhood, district or city scale 

Building segmentation  • Building data of each building is not required  
• Studies are highly scalable and easily applied to larger 

areas [38,43]  

• Detailed understanding of the 
dynamics of buildings required  

• End-use and housing stock energy use 
modelling  

• Especially useful for high-density cities 
with wide variety of buildings 

Simulating weather data 
at finer scale  

• Capable of generating a more accurate prediction  
• Capable of incorporating the effect of microclimate in 

urban areas [71,72]  

• Intensive computational volume 
and time required [60]  

• Fine scale weather data is needed  

• Mainly applied to simulation at the 
neighbourhood or district scale 

Manipulating 
morphological data  

• Capable of capturing the spatial variations in weather 
data without the need of microclimate modelling [36,73]  

• Easily conducted  

• Coarse spatial resolution  • Especially useful for cities with compact 
settings [43]  

• Applied to simulation at the 
neighbourhood, district or city scale  

C.H.H. Wong et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.buildenv.2021.108235
https://doi.org/10.1016/j.buildenv.2021.108235
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref1
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref1
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref1
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref2
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref2
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref2
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref2
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref3
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref3
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref3
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref4
http://refhub.elsevier.com/S0360-1323(21)00636-3/sref4


Building and Environment 205 (2021) 108235

10

[5] K. Asarpota, V. Nadin, Energy strategies, the urban dimension, and spatial 
planning, Energies 13 (14) (2020) 3642. 

[6] C.F. Reinhart, C. Cerezo Davila, Urban building energy modelling – a review of a 
nascent field, Build. Environ. 97 (2016) 196–202. 

[7] S.T. Moghadam, C. Delmastro, S.P. Corgnati, P. Lombardi, Urban energy planning 
procedure for sustainable development in the built environment: a review of 
available spatial approaches, J. Clean. Prod. 165 (2017) 811–827. 

[8] L.G. Swan, V.I. Ugursal, Modeling of end-use energy consumption in the residential 
sector: a review of modeling techniques, Renew. Sustain. Energy Rev. 13 (8) (2009) 
1819–1835. 

[9] M. Kavgic, A. Mavrogianni, D. Mumovic, A. Summerfield, Z. Stevanovic, 
M. Djurovic-Petrovic, A review of bottom-up building stock models for energy 
consumption in the residential sector, Build. Environ. 45 (7) (2010) 1683–1697. 

[10] N.H. Sandberg, I. Sartori, O. Heidrich, R. Dawson, E. Dascalaki, S. Dimitriou, 
H. Brattebø, Dynamic building stock modelling: application to 11 European 
countries to support the energy efficiency and retrofit ambitions of the EU, Energy 
Build. 132 (2016) 26–38. 

[11] J.A. Fonseca, A. Schlueter, Integrated model for characterization of spatiotemporal 
building energy consumption patterns in neighborhoods and city districts, Appl. 
Energy 142 (2015) 247–265. 

[12] T. Hong, Y. Chen, X. Luo, N. Luo, S.H. Lee, Ten questions on urban building energy 
modeling, Build. Environ. 168 (2020) 106508. 

[13] W. Li, Y. Zhou, K. Cetin, J. Eom, Y. Wang, G. Chen, X. Zhang, Modeling urban 
building energy use: a review of modeling approaches and procedures, Energy 141 
(2017) 2445–2457. 

[14] J.L. Hensen, R. Lamberts (Eds.), Building Performance Simulation for Design and 
Operation, Routledge, 2012. 
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