Bioclimatic Performance of High Rise Office Buildings: A Case Study in Penang Island

Lokman Hakim Ismail1* and Magda Sibley2

1 Department of Building Engineering and Construction, Faculty of Civil and Environmental Engineering, Tun Hussein Onn Technological College University (KUiTTHO), Johor, Malaysia.
* PhD Student School of Architecture & Building Engineering, University of Liverpool, United Kingdom
2 School of Architecture & Building Engineering, University of Liverpool, United Kingdom

ABSTRACT: It is frequently argued that bio-climatic design strategies result in substantial energy savings in buildings and higher levels of user’s satisfaction. Such claims have not been fully substantiated by systematic research, however, particularly when dealing with high rise office blocks [i]. This paper presents the performance of a high rise bio-climatic office block designed by Ken Yeang and compares it with that of a conventional one. Both case study buildings are located in the Island of Penang, Malaysia with similar outdoor conditions. Indoor environmental parameters have been measured using portable equipment and user’s perceptions have been recorded using structured questionnaires. The paper presents the rating of a comparative analysis of the measured indoor temperature and user’s perception in both office buildings.

Keywords: Bioclimatic, High-rise office, Tropical Climate, Comfort, Users’ satisfaction

1. INTRODUCTION

High rise buildings have been proliferating in major cities in Malaysia since the 1960’s. In the 1970’s, Ken Yeang proposed a set of bioclimatic principles for high-rise buildings in tropical climates [ii]. This paper presents the ratings of an evaluation of the performance of two different types of high rise office blocks: one “conventional”, the other incorporating “bioclimatic” principles. Both buildings are located in the city of George Town, Penang, Malaysia. A series of building design evaluations has been carried out in a systematic way in order to test the following assumption: “Bioclimatic buildings create a better working environment for the users and provide higher level of satisfaction than conventional ones”.

The evaluation of the two building types was carried out in relation to the quality of lighting, ventilation and thermal comfort in the office spaces of each of the case study buildings.

2. RESEARCH METHOD

Field work was carried out in Malaysia in July 2004 during which questionnaires were distributed to the occupants in two different office buildings in order to record their perceptions of the environmental qualities of their working space [iii].

The collection of subjective data (recording the perception of the office space by its occupants and their level of satisfaction) allowed for a subjective data analysis.

Direct observations were carried out by the authors on various architectural aspects of the

3. CASE STUDIES

The user’s satisfaction data was gathered via questionnaires which were distributed to the building occupiers, mainly in the open plan office spaces. In the questionnaire, respondents were asked to give their opinion on the architectural and environmental qualities of their building. They were also required to express their level of satisfaction with the lighting, ventilation and thermal comfort in their particular office space. The sample consisted of a third of the occupants. A reasonable number of questionnaires were distributed randomly to the staff and those returned were about 35% of the total distributed.

Two buildings were involved in this study: the Tun Abdul Razak Complex (conventional) – more popularly known as KOMTAR Tower and the United Malay Union Organisation building (bioclimatic) – known as UMNO Building (see figure 1).
The buildings are located in Penang Island, among the most developed state in the Northern region of Peninsular Malaysia, situated at latitude 5°26’N and longitude 101°42’N. The climatic characteristics can be classified as warm-humid equatorial with high temperature and humidity throughout the year, intense sunshine, strong glare, high radiation levels and rainfall \[iv \]. The average outside air temperatures is between 25 °C and 34 °C with relative humidity ranging from 80% to 90% percent. Winds are generally of low-variable speed but can be strong when combined with rain. Rainfall averages 2500mm to 3000mm annually and is more intense with the monsoons \[v \].

In UMNO building, all building services such as lift, toilet, staircases, utilities duct (building service core) are grouped and are all located along the east facade. Being elongated, the building allows for good cross ventilation and presents a North West- South East orientation. There are wind wing walls located on the west side of the building. These external walls have parts that control and enable good cross-ventilation for internal comfort, provide solar protection, regulate wind-driven rain and facilitating rapid discharge of heavy rainfall. The bioclimatic approach also provides buffer zones through carefully located building services which insulate the internal spaces while at the same time minimizing air-conditioning loads.

In KOMTAR tower, however, the service core is located in the centre of the polygon shape of the building and the geometry of the site does not coincide with sun path geometry. Most of the windows are facing towards the panoramic views of the island but exposed directly to the full impact of
external temperatures and radiant heat especially on
the east and west sides.

4.3. User’s Perception of their Building Design

This section presents user’s perception of the
quality of several aspects of building design and their
satisfaction level with them. Perceptions were
measured using several rating scales in the survey
as shown in table 2.

| Table 1: Bioclimatic indicators for high rise buildings
in UMNO building and KOMTAR tower. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INDICATORS</td>
<td>UMNO</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Biosclimatic Strategies</td>
<td></td>
</tr>
<tr>
<td>Plan/Use patterns/ ventilation</td>
<td>√</td>
</tr>
<tr>
<td>Balconies and terraces</td>
<td></td>
</tr>
<tr>
<td>Site/Building sky-court</td>
<td>√</td>
</tr>
<tr>
<td>Environmentally interactive wall</td>
<td></td>
</tr>
<tr>
<td>View out from lobby</td>
<td></td>
</tr>
<tr>
<td>Site building adjustment</td>
<td>√</td>
</tr>
<tr>
<td>Curtain wall at N & S facades</td>
<td>√</td>
</tr>
<tr>
<td>Form and Envelope</td>
<td></td>
</tr>
<tr>
<td>Shading devices</td>
<td>√</td>
</tr>
<tr>
<td>Wind ducts</td>
<td></td>
</tr>
<tr>
<td>Wind scoops</td>
<td>√</td>
</tr>
<tr>
<td>Insulative wall</td>
<td>√</td>
</tr>
<tr>
<td>Cores at hot side</td>
<td></td>
</tr>
<tr>
<td>Central core</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Several rating scales used in the survey

<table>
<thead>
<tr>
<th>Rating Scale</th>
<th>Negative</th>
<th>Neutral</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Hot</td>
<td>Too warm</td>
<td>Slightly warm</td>
<td>Comfortable</td>
</tr>
<tr>
<td>Much too dim</td>
<td>Too dim</td>
<td>Slightly dim</td>
<td>Just nice and clear</td>
</tr>
<tr>
<td>Much too breezy</td>
<td>Too breezy</td>
<td>Slightly breezy</td>
<td>Just right</td>
</tr>
<tr>
<td>Highly satisfied</td>
<td>Very satisfied</td>
<td>Satisfied</td>
<td>Neutral</td>
</tr>
<tr>
<td>Poor</td>
<td>Fair</td>
<td>Adequate</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Excellent</td>
</tr>
</tbody>
</table>

4.3.1 Architectural Design

Twenty nine questions related to architectural
design were asked in the questionnaires such as
quality of window size and position, general layout,
corridor, sky court, adequacy of spaces, terraces and
every. Out of twenty nine, 20 questions have rating
frequency skew towards “positive” categories and 9
questions have ratings frequency skew towards
“negative” categories for KOMTAR tower. Whereas
in UMNO building, 22 questions have ratings
frequency skew towards positive categories, 6
questions have rating frequency skew towards
“negative” categories and 1 “neutral”.

Elements that skewed towards negative
categories for KOMTAR tower are: (1) adequacy of
space, (2) flexibility of space use, (3) availability of
parking space, (4) lift lobby pleasantness, (5) public
amenities in washrooms, (6) quality of safety and
security system, (7) lift service interval time, (8)
satisfaction of overall lift services and (9) difficulty in
closing/opening window.

Elements that skewed towards negative
categories for UMNO building are: (1) quality of
landscaping at most common area, (2) lift lobby
pleasantness, (3) public amenities in washrooms, (4)
life service interval time, (5) satisfaction of overall lift
services and (6) windows’ position.

A summary of the rating for architectural
elements is shown in Figure 2.

4.3.2 Ventilation

Fifteen questions related to air ventilation
condition were asked in the questionnaires such as
availability of natural ventilation at work stations,
meeting areas and corridors as well as the quality of
air circulation from the air conditioner at lift lobby,
rest rooms, etc. Out of fifteen, 4 questions have rating
frequency skew towards “positive” categories,
10 questions have rating frequency skew towards
“negative” categories and 1 is “neutral” for KOMTAR
tower. While in UMNO building, 4 questions have
rating frequency skew towards positive categories
and 11 questions have rating frequency skew
towards “negative” categories.

![Figure 2: Distribution rating for architectural condition](image)
area, (3) restroom, (4) corridor; (5) overall satisfaction with the natural ventilation available in the office; quality of air conditioner air circulation at: (6) lift lobby, (7) meeting area, (8) rest room, (9) corridor, (10) satisfaction towards quality of odour in washroom and, (11) overall air movement from air conditioner in office. Summary of the rating for ventilation elements is shown in Figure 3.

Figure 4 shows the hourly air velocity reading for both KOMTAR tower and UMNO building. The daily air velocity in KOMTAR tower in average is 0.07 ms$^{-1}$ with minimum and maximum of 0.04 ms$^{-1}$ and 0.09 ms$^{-1}$ respectively whereas in UMNO building, the daily air velocity in average is 0.10 ms$^{-1}$, slightly higher than that of KOMTAR tower with minimum and maximum of 0.05 ms$^{-1}$ and 0.16 ms$^{-1}$ respectively.

4.3.3 Thermal Comfort

Users’ perception of the thermal comfort of their working space was assessed through their rating of seven questions such as quality of thermal comfort at their work station, lift lobby, meeting area, rest room, and corridor. The overall perception of thermal comfort within the building was also recorded. Out of seven, 4 questions have rating frequency skew towards “positive” categories, 2 questions have rating frequency skew towards “negative” categories and 1 question is “neutral” for KOMTAR tower. Quite similar in UMNO building where 4 questions have rating frequency skew towards positive categories and 3 questions have rating frequency skew towards “negative” categories.

Elements that skewed towards negative categories for KOMTAR tower are: (1) quality of the temperature level at corridor and (2) overall thermal sensation at the office whereas those for UMNO building are: the quality of the temperature level at: (1) work station, (2) lift lobby and (3) rest room. Summary of the rating for thermal elements is shown in Figure 5.

Figure 6 shows the hourly air temperature reading for both KOMTAR tower and UMNO building. The daily indoor temperature in KOMTAR tower in average is 24.6°C with minimum and maximum of 23.8°C and 25.2°C respectively whereas in UMNO building, the daily indoor temperature in average is 22.7°C, slightly lower than that of KOMTAR tower with minimum and maximum of 21.4°C and 24.4°C respectively.
4.3.5 Overall Working Environment Condition

Most respondents gave positive indications relating to satisfaction with their working environment in both KOMTAR tower and UMNO building, with majority ratings of 51.2% and 55.6% respectively. About 43.9% of respondents rating for neutral in KOMTAR tower whereas in UMNO building is 33.4%. Figure 8 shows the Frequency for working environment satisfaction in pie chart diagram. Most of the respondents are happy working in their building. None of the respondents in UMNO building are unhappy but 7.3% of respondents in KOMTAR tower are unhappy working in their building as shown in Figure 9.

The polygon shape of KOMTAR tower has no external shading devices to minimize solar heat gain whereas the UMNO building has wind wing-walls (see figure 1) that direct wind to special balconies zone and at the same time minimize solar heat gain from external wall. This might be why the indoor air temperature in KOMTAR tower is slightly higher than that of UMNO building (see Figure 6). But, the human factors analysis via questionnaires for both building has quite similar rating (see Figure 5).

As for the lighting condition especially the natural lighting, KOMTAR tower has no external shading devices to minimize solar heat gain whereas the UMNO building has wind wing-walls (see figure 1) that direct wind to special balconies zone and at the same time minimize solar heat gain from external wall. This might be why the indoor air temperature in KOMTAR tower is slightly higher than that of UMNO building (see Figure 6). But, the human factors analysis via questionnaires for both building has quite similar rating (see Figure 5).

5. DISCUSSION

All together 65 elements were rated by the respondents in the questionnaires in order to record user’s perception of several features in their building as well as their satisfaction level with those features. Out of the 65 elements being evaluated in KOMTAR tower, 41 elements have rating frequency skew towards “positive” categories, 22 elements have rating frequency skew towards “negative” categories and 2 elements are “neutral”. While in UMNO building, 40 elements have rating frequency skew towards positive categories, 23 elements have rating frequency skew towards “negative” categories and 2 elements are “neutral”. The distribution is summarised in Figure 10.

In architectural design, UMNO building has more elements falling into positive categories than that of KOMTAR tower. This could be related to the bioclimatic strategies approaches applied in the building that provide significant impact on the quality of architectural design as there are about thirteen bioclimatic criteria found present in UMNO building as mentioned in section 4.2.

UMNO building is probably the first high-rise office that uses wind as natural ventilation at point of entry as a source of fresh air-supply to the interior and not for internal comfort. All the lift lobbies, staircases and toilets also have natural ventilation making the building have higher level of air-change per hour. All the elements related to air ventilation condition fall into negative categories for both KOMTAR tower and UMNO building (see Figure 3).

The polygon shape of KOMTAR tower has no external shading devices to minimize solar heat gain whereas the UMNO building has wind wing-walls (see figure 1) that direct wind to special balconies zone and at the same time minimize solar heat gain from external wall. This might be why the indoor air temperature in KOMTAR tower is slightly higher than that of UMNO building (see Figure 6). But, the human factors analysis via questionnaires for both building has quite similar rating (see Figure 5).
It can be concluded that the claimed advantage of "bioclimatic high rise office building creates a better working environment for the users and provides higher level of satisfaction than conventional ones" is clearly substantiated. In order to substantiate the hypothesis further, more similar investigation should be done in the future. Application of computer programs available in the market might be useful to proof the claim advantage in more precise technique. Software package such as Ecotect and ASHRAE Thermal Comfort program or others simulation based program can be used to analyse the data for a particular area. At the moment, the authors are processing similar investigation on another four buildings that have similar characteristics in order to provide more evidence to substantiate the hypothesis.

From the environmental measurement rating, we found that all elements indicate that bioclimatic design has better indoor environment than that of a conventional one however, based on user’s perception from the survey data, there were no clear advantages in building performance in either "bioclimatic" or "conventional" high rise building.

However if we specifically focus on the positive ratings alone and compare the rating percentage between KOMTAR (conventional) and UMNO (bioclimatic) we can see that out of 65 elements, 40 elements show that UMNO building has a higher percentage of positive ratings whereas KOMTAR tower has only 25 elements higher percentage than that of UMNO building (see figure 11).

6. CONCLUSION

Figure 11: Higher percentage of positive rating for all elements in both blocks.